Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1980 Jun;28(3):853–859. doi: 10.1128/iai.28.3.853-859.1980

Microflora and chemical composition of dental plaque from subjects with hereditary fructose intolerance.

C I Hoover, E Newbrun, G Mettraux, H Graf
PMCID: PMC551029  PMID: 7399699

Abstract

We compared the microbiological and chemical composition of dental plaque from subjects with hereditary fructose intolerance who restrict their dietary sugar intake with that of control subjects who do not. The two groups showed no significant differences in chemical composition of plaque: the mean protein, carbohydrate, calcium, magnesium, and phosphate contents were similar. Dental plaque from both groups contained similar numbers of total colony-forming units per microgram of plaque protein, and Streptococcus sanguis, an indigenous nonpathogen, was isolated with equal frequency from plaque samples of both groups. However, potentially odontopathic Streptococcus mutans and Lactobacillus were isolated three to four times more frequently from plaque samples of control subjects than from plaque samples of subjects with hereditary fructose intolerance. Clearly, diet (sucrose in particular) influences the colonization and multiplication of specific cariogenic organisms in dental plaque.

Full text

PDF
853

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley F. P., Wilson R. F. Dental plaque and caries. A 3-year longitudinal study in children. Br Dent J. 1977 Feb 1;142(3):85–91. doi: 10.1038/sj.bdj.4803870. [DOI] [PubMed] [Google Scholar]
  2. Ashley F. P., Wilson R. F. The relationship between dietary sugar experience and the quantity and biochemical composition of dental plaque in man. Arch Oral Biol. 1977;22(7):409–414. doi: 10.1016/0003-9969(77)90119-4. [DOI] [PubMed] [Google Scholar]
  3. Bowen W. H., Velez H., Aguila M., Velasquez H., Sierra L. I., Gillespie G. The microbiology and biochemistry of plaque, saliva, and drinking water from two communities with contrasting levels of caries in Colombia, S.A. J Dent Res. 1977 Oct;56(Spec No):C32–C39. doi: 10.1177/002203457705600314011. [DOI] [PubMed] [Google Scholar]
  4. Bratthall D. Demonstration of Streptococcus mutans strains in some selected areas of the world. Odontol Revy. 1972;23(4):401–410. [PubMed] [Google Scholar]
  5. Bratthall D. Demonstration of five serological groups of streptococcal strains resembling Streptococcus mutans. Odontol Revy. 1970;21(2):143–152. [PubMed] [Google Scholar]
  6. Bratthall D. Immunofluorescent identification of Streptococcus mutans. Odontol Revy. 1972;23(2):181–196. [PubMed] [Google Scholar]
  7. Bright J. S., Rosen S., Chorpenning F. W. Survey of the seven serological types of Streptococcus mutans in six-year-old children. J Dent Res. 1977 Nov;56(11):1421–1421. doi: 10.1177/00220345770560112501. [DOI] [PubMed] [Google Scholar]
  8. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  9. CHAMBERS R. A., PRATT R. T. Idiosyncrasy to fructose. Lancet. 1956 Aug 18;271(6938):340–340. doi: 10.1016/s0140-6736(56)92196-1. [DOI] [PubMed] [Google Scholar]
  10. Cox M. E., Mangels J. I. Improved chamber for the isolation of anaerobic microorganisms. J Clin Microbiol. 1976 Jul;4(1):40–45. doi: 10.1128/jcm.4.1.40-45.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Stoppelaar J. D., Van Houte J., Backer DIRKS O. The effect of carbohydrate restriction on the presence of Streptococcus mutans, Streptococcus sanguis and iodophilic polysaccharide-producing bacteria in human dental plaque. Caries Res. 1970;4(2):114–123. doi: 10.1159/000259633. [DOI] [PubMed] [Google Scholar]
  12. De Stoppelaar J. D., Van Houte J., Backer Dirks O. The relationship between extracellular polysaccharide-producing streptococci and smooth surface caries in 13-year-old children. Caries Res. 1969;3(2):190–199. doi: 10.1159/000259582. [DOI] [PubMed] [Google Scholar]
  13. Duany L. F., Jablon J. M., Zinner D. D. Epidemiologic studies of caries-free and caries-active students. I. Prevalence of potentially cariogenic streptococci. J Dent Res. 1972 May-Jun;51(3):723–726. doi: 10.1177/00220345720510030601. [DOI] [PubMed] [Google Scholar]
  14. Facklam R. R. Physiological differentiation of viridans streptococci. J Clin Microbiol. 1977 Feb;5(2):184–201. doi: 10.1128/jcm.5.2.184-201.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. GUSTAFSSON B. E., QUENSEL C. E., LANKE L. S., LUNDQVIST C., GRAHNEN H., BONOW B. E., KRASSE B. The Vipeholm dental caries study; the effect of different levels of carbohydrate intake on caries activity in 436 individuals observed for five years. Acta Odontol Scand. 1954 Sep;11(3-4):232–264. doi: 10.3109/00016355308993925. [DOI] [PubMed] [Google Scholar]
  16. Geddes D. A., Cooke J. A., Edgar W. M., Jenkins G. N. The effect of frequent sucrose mouthrinsing on the induction in vivo of caries-like changes in human dental enamel. Arch Oral Biol. 1978;23(8):663–665. doi: 10.1016/0003-9969(78)90191-7. [DOI] [PubMed] [Google Scholar]
  17. Gibbons R. J., Fitzgerald R. J. Dextran-induced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaques. J Bacteriol. 1969 May;98(2):341–346. doi: 10.1128/jb.98.2.341-346.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grenier E. M., Eveland W. C., Loesche W. J. Identification of Streptococcus mutans serotypes in dental plaque by fluorescent antibody techniques. Arch Oral Biol. 1973 Jun;18(6):707–715. doi: 10.1016/0003-9969(73)90006-x. [DOI] [PubMed] [Google Scholar]
  19. Gron P., Yao K., Spinelli M. A study of inorganic constituents in dental plaque. J Dent Res. 1969 Sep-Oct;48(5):799–805. doi: 10.1177/00220345690480053201. [DOI] [PubMed] [Google Scholar]
  20. HARRIS R. BIOLOGY OF THE CHILDREN OF HOPEWOOD HOUSE, BOWRAL, AUSTRALIA. 4. OBSERVATIONS ON DENTAL-CARIES EXPERIENCE EXTENDING OVER FIVE YEARS (1957-61). J Dent Res. 1963 Nov-Dec;42:1387–1399. doi: 10.1177/00220345630420061601. [DOI] [PubMed] [Google Scholar]
  21. Hamada S., Masuda N., Ooshima T., Sobue S., Kotani S. Epidemiological survey of Streptococcus mutans among Japanese children. Identification and serological typing of the isolated strains. Jpn J Microbiol. 1976 Feb;20(1):33–44. doi: 10.1111/j.1348-0421.1976.tb00905.x. [DOI] [PubMed] [Google Scholar]
  22. Hoerman K. C., Keene H. J., Shklair I. L., Burmeister J. A. The association of Streptococcus mutans with early carious lesions in human teeth. J Am Dent Assoc. 1972 Dec;85(6):1349–1352. doi: 10.14219/jada.archive.1972.0511. [DOI] [PubMed] [Google Scholar]
  23. Hoover C. I., Newbrun E. Survival of bacteria from human dental plaque under various transport conditions. J Clin Microbiol. 1977 Sep;6(3):212–218. doi: 10.1128/jcm.6.3.212-218.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jordan H. V., Englander H. R., Lim S. Potentially cariogenic streptococci in selected population groups in the western hemisphere. J Am Dent Assoc. 1969 Jun;78(6):1331–1335. doi: 10.14219/jada.archive.1969.0194. [DOI] [PubMed] [Google Scholar]
  25. Keene H. J., Shklair I. L., Anderson D. M., Mickel G. J. Relationship of Streptococcus mutans biotypes to dental caries prevalence in Saudi Arabian naval men. J Dent Res. 1977 Apr;56(4):356–361. doi: 10.1177/00220345770560040201. [DOI] [PubMed] [Google Scholar]
  26. King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Krasse B., Jordan H. V., Edwardsson S., Svensson I., Trell L. The occurrence of certain "caries-inducing" streptococci in human dental plaque material with special reference to frequency and activity of caries. Arch Oral Biol. 1968 Aug;13(8):911–918. doi: 10.1016/0003-9969(68)90006-x. [DOI] [PubMed] [Google Scholar]
  28. Krembel J., Frank R. M., Deluzarche A. Fractionation of human dental plaques. Arch Oral Biol. 1969 May;14(5):563–565. doi: 10.1016/0003-9969(69)90151-4. [DOI] [PubMed] [Google Scholar]
  29. Little W. A., Korts D. C., Thomson L. A., Bowen W. H. Comparative recovery of Streptococcus mutans on ten isolation media. J Clin Microbiol. 1977 Jun;5(6):578–583. doi: 10.1128/jcm.5.6.578-583.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Loesche W. J. Chemotherapy of dental plaque infections. Oral Sci Rev. 1976;9:65–107. [PubMed] [Google Scholar]
  31. Masuda N., Tsutsumi N., Sobue S., Hamada S. Longitudinal survey of the distribution of various serotypes of Streptococcus mutans in infants. J Clin Microbiol. 1979 Oct;10(4):497–502. doi: 10.1128/jcm.10.4.497-502.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McKnight G. S. A colorimetric method for the determination of submicrogram quantities of protein. Anal Biochem. 1977 Mar;78(1):86–92. doi: 10.1016/0003-2697(77)90011-2. [DOI] [PubMed] [Google Scholar]
  33. Michalek S. M., McGhee J. R., Navia J. M. Virulence of Streptococcus mutans: a sensitive method for evaluating cariogenicity in young gnotobiotic rats. Infect Immun. 1975 Jul;12(1):69–75. doi: 10.1128/iai.12.1.69-75.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Newbrun E. Dietary carbohydrates: their role in cariogenicity. Med Clin North Am. 1979 Sep;63(5):1069–1086. doi: 10.1016/s0025-7125(16)31660-1. [DOI] [PubMed] [Google Scholar]
  35. Nordmann Y., Schapira F., Dreyfus J. C. A structurally modified liver aldolase in fructose intolerance: immunological and kinetic evidence. Biochem Biophys Res Commun. 1968 Jun 28;31(6):884–889. doi: 10.1016/0006-291x(68)90534-2. [DOI] [PubMed] [Google Scholar]
  36. Perch B., Kjems E., Ravn T. Biochemical and serological properties of Streptococcus mutans from various human and animal sources. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Jun;82(3):357–370. doi: 10.1111/j.1699-0463.1974.tb02338.x. [DOI] [PubMed] [Google Scholar]
  37. Schapira F., Nordmann Y., Gregori C. Hereditary alterations of fructose metabolizing enzymes. Studies on essential fructosuria and on hereditary fructose intolerance. Acta Med Scand Suppl. 1972;542:77–83. [PubMed] [Google Scholar]
  38. Shklair I. L., Keene H. J., Cullen P. The distribution of Streptococcus mutans on the teeth of two groups of naval recruits. Arch Oral Biol. 1974 Feb;19(2):199–202. doi: 10.1016/0003-9969(74)90214-3. [DOI] [PubMed] [Google Scholar]
  39. Syed S. A., Loesche W. J. Survival of human dental plaque flora in various transport media. Appl Microbiol. 1972 Oct;24(4):638–644. doi: 10.1128/am.24.4.638-644.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tanzer J. M. Essential dependence of smooth surface caries on, and augmentation of fissure caries by, sucrose and Streptococcus mutans infection. Infect Immun. 1979 Aug;25(2):526–531. doi: 10.1128/iai.25.2.526-531.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thomson L. A., Bowen W. H., Little W. A., Kuzmiak-Jones H. M., Gomez I. M. Simultaneous implantation of five serotypes of Streptococcus mutans in gnotobiotic rats. Caries Res. 1979;13(1):9–17. doi: 10.1159/000260376. [DOI] [PubMed] [Google Scholar]
  42. Wood J. M. The amount, distribution and metabolism of soluble polysaccharides in human dental plaque. Arch Oral Biol. 1967 Jul;12(7):849–858. doi: 10.1016/0003-9969(67)90107-0. [DOI] [PubMed] [Google Scholar]
  43. Zachrisson B. U. Mast cells of the human gingiva. I. Investigations concerning the preservation and demonstration of mast cells in the gingival area. Odontol Revy. 1968;19(1):1–22. [PubMed] [Google Scholar]
  44. van Houte J., Duchin S. Streptococcus mutans in the mouths of children with congenital sucrase deficiency. Arch Oral Biol. 1975 Nov;20(11):771–773. doi: 10.1016/0003-9969(75)90050-3. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES