Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(23):9108–9112. doi: 10.1073/pnas.87.23.9108

Identification of a phenylalkylamine binding region within the alpha 1 subunit of skeletal muscle Ca2+ channels.

J Striessnig 1, H Glossmann 1, W A Catterall 1
PMCID: PMC55113  PMID: 2174553

Abstract

The alpha 1 subunit of the skeletal muscle Ca2+ channel has been specifically photoaffinity labeled with the phenylalkylamine-receptor-selective verapamil derivative (-)-5-(3-azidophenethyl[N-methyl-3H]methylamino)-2-(3,4,5- trimethoxyphenyl)-2-isopropylvaleronitrile ([N-methyl-3H]LU49888). Proteolytic fragments generated by various endoproteases were probed by immunoprecipitation with several sequence-specific antibodies to determine the site of labeling within the primary structure of alpha 1. These results restrict the site of photolabeling by [N-methyl-3H]LU49888 to the region between Glu-1349 and Trp-1391. This segment of alpha 1 contains transmembrane helix S6 of domain IV and the beginning of the long intracellular C-terminal tail. Because of the phenylalkylamine receptor site is only accessible from the intracellular side of the Ca2+ channel, we propose that the intracellular end of helix IVS6 and the adjacent intracellular amino acid residues play an essential role in formation of the phenylalkylamine receptor site. The action of the phenylalkylamines as open-channel blockers suggests that this region may also contribute to formation of the intracellular opening of the transmembrane pore of the Ca2+ channel.

Full text

PDF
9108

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affolter H., Coronado R. Sidedness of reconstituted calcium channels from muscle transverse tubules as determined by D600 and D890 blockade. Biophys J. 1986 Mar;49(3):767–771. doi: 10.1016/S0006-3495(86)83703-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babitch J. Channel hands. Nature. 1990 Jul 26;346(6282):321–322. doi: 10.1038/346321b0. [DOI] [PubMed] [Google Scholar]
  3. Campbell K. P., Leung A. T., Sharp A. H. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci. 1988 Oct;11(10):425–430. doi: 10.1016/0166-2236(88)90193-2. [DOI] [PubMed] [Google Scholar]
  4. Catterall W. A., Seagar M. J., Takahashi M. Molecular properties of dihydropyridine-sensitive calcium channels in skeletal muscle. J Biol Chem. 1988 Mar 15;263(8):3535–3538. [PubMed] [Google Scholar]
  5. Catterall W. A. Structure and function of voltage-sensitive ion channels. Science. 1988 Oct 7;242(4875):50–61. doi: 10.1126/science.2459775. [DOI] [PubMed] [Google Scholar]
  6. Curtis B. M., Catterall W. A. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry. 1984 May 8;23(10):2113–2118. doi: 10.1021/bi00305a001. [DOI] [PubMed] [Google Scholar]
  7. De Jongh K. S., Merrick D. K., Catterall W. A. Subunits of purified calcium channels: a 212-kDa form of alpha 1 and partial amino acid sequence of a phosphorylation site of an independent beta subunit. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8585–8589. doi: 10.1073/pnas.86.21.8585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garcia M. L., King V. F., Siegl P. K., Reuben J. P., Kaczorowski G. J. Binding of Ca2+ entry blockers to cardiac sarcolemmal membrane vesicles. Characterization of diltiazem-binding sites and their interaction with dihydropyridine and aralkylamine receptors. J Biol Chem. 1986 Jun 25;261(18):8146–8157. [PubMed] [Google Scholar]
  9. Glossmann H., Striessnig J. Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol. 1990;114:1–105. doi: 10.1007/BFb0031018. [DOI] [PubMed] [Google Scholar]
  10. Goll A., Ferry D. R., Striessnig J., Schober M., Glossmann H. (-)-[3H]Desmethoxyverapamil, a novel Ca2+ channel probe. Binding characteristics and target size analysis of its receptor in skeletal muscle. FEBS Lett. 1984 Oct 29;176(2):371–377. doi: 10.1016/0014-5793(84)81199-0. [DOI] [PubMed] [Google Scholar]
  11. Goll A., Glossmann H., Mannhold R. Correlation between the negative inotropic potency and binding parameters of 1,4-dihydropyridine and phenylalkylamine calcium channel blockers in cat heart. Naunyn Schmiedebergs Arch Pharmacol. 1986 Nov;334(3):303–312. doi: 10.1007/BF00508786. [DOI] [PubMed] [Google Scholar]
  12. Hescheler J., Pelzer D., Trube G., Trautwein W. Does the organic calcium channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflugers Arch. 1982 Jun;393(4):287–291. doi: 10.1007/BF00581411. [DOI] [PubMed] [Google Scholar]
  13. Hess P. Calcium channels in vertebrate cells. Annu Rev Neurosci. 1990;13:337–356. doi: 10.1146/annurev.ne.13.030190.002005. [DOI] [PubMed] [Google Scholar]
  14. Hosey M. M., Lazdunski M. Calcium channels: molecular pharmacology, structure and regulation. J Membr Biol. 1988 Sep;104(2):81–105. doi: 10.1007/BF01870922. [DOI] [PubMed] [Google Scholar]
  15. MacKinnon R., Miller C. Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science. 1989 Sep 22;245(4924):1382–1385. doi: 10.1126/science.2476850. [DOI] [PubMed] [Google Scholar]
  16. Mikami A., Imoto K., Tanabe T., Niidome T., Mori Y., Takeshima H., Narumiya S., Numa S. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature. 1989 Jul 20;340(6230):230–233. doi: 10.1038/340230a0. [DOI] [PubMed] [Google Scholar]
  17. Noda M., Suzuki H., Numa S., Stühmer W. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett. 1989 Dec 18;259(1):213–216. doi: 10.1016/0014-5793(89)81531-5. [DOI] [PubMed] [Google Scholar]
  18. Rossie S., Gordon D., Catterall W. A. Identification of an intracellular domain of the sodium channel having multiple cAMP-dependent phosphorylation sites. J Biol Chem. 1987 Dec 25;262(36):17530–17535. [PubMed] [Google Scholar]
  19. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  20. Striessnig J., Knaus H. G., Grabner M., Moosburger K., Seitz W., Lietz H., Glossmann H. Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett. 1987 Feb 23;212(2):247–253. doi: 10.1016/0014-5793(87)81354-6. [DOI] [PubMed] [Google Scholar]
  21. Tanabe T., Takeshima H., Mikami A., Flockerzi V., Takahashi H., Kangawa K., Kojima M., Matsuo H., Hirose T., Numa S. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature. 1987 Jul 23;328(6128):313–318. doi: 10.1038/328313a0. [DOI] [PubMed] [Google Scholar]
  22. Tejedor F. J., Catterall W. A. Site of covalent attachment of alpha-scorpion toxin derivatives in domain I of the sodium channel alpha subunit. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8742–8746. doi: 10.1073/pnas.85.22.8742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Valdivia H. H., Coronado R. Internal and external effects of dihydropyridines in the calcium channel of skeletal muscle. J Gen Physiol. 1990 Jan;95(1):1–27. doi: 10.1085/jgp.95.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES