Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1980 Dec;30(3):824–831. doi: 10.1128/iai.30.3.824-831.1980

Differential Alterations in Host Peripheral Polymorphonuclear Leukocyte Chemiluminescence During the Course of Bacterial and Viral Infections

James P McCarthy 1, Robert S Bodroghy 1, Peter B Jahrling 1, Philip Z Sobocinski 1
PMCID: PMC551389  PMID: 7228389

Abstract

Previous studies have shown that stimulation of the oxidative metabolism in polymorphonuclear leukocytes (PMN) by in vitro phagocytosis of various microorganisms results in photon emission, termed chemiluminescence (CL). Studies were conducted to determine whether bacterial and viral infections induce enhanced basal endogenous host peripheral PMN CL in the absence of in vitro phagocytic stimulation. Nonimmune rats and guinea pigs as well as immune rats were inoculated with various doses (105 to 107) of live vaccine strain Francisella tularensis (per 100 g of body weight). In addition, nonimmune guinea pigs were inoculated with 40,000 plaque-forming units of Pichinde virus. Luminol-assisted endogenous PMN CL was measured at various time intervals after inoculation of microorganisms. Enhanced endogenous PMN CL was detected as early as the appearance of fever (12 h) in nonimmune animals infected with F. tularensis. Addition of sodium azide, N-ethylmaleimide, superoxide dismutase, or catalase to the CL reaction mixture containing PMN from infected animals significantly decreased the CL response. Immune rats challenged with F. tularensis exhibited resistance to infection and a decreased PMN CL compared with nonimmune rats 24 and 48 h after inoculation. However, the CL response from immune rats was significantly elevated, compared with control values. In contrast to the results obtained with the model bacterial infection, PMN isolated from guinea pigs inoculated with Pichinde virus failed to exhibit enhanced CL, compared with controls, despite significant viremia and fever. Results suggest that enhanced endogenous CL during bacterial infection occurs through mechanisms involving increased PMN oxidative metabolism and the subsequent generation of microbicidal forms of oxygen. Further, measurement of endogenous PMN CL may have diagnostic and prognostic value in infectious diseases.

Full text

PDF
824

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Loose L. D. Phagocytic activation of a luminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochem Biophys Res Commun. 1976 Mar 8;69(1):245–252. doi: 10.1016/s0006-291x(76)80299-9. [DOI] [PubMed] [Google Scholar]
  2. Allen R. C., Stjernholm R. L., Reed M. A., Harper T. B., 3rd, Gupta S., Steele R. H., Waring W. W. Correlation of metabolic and chemiluminescent responses of granulocytes from three female siblings with chronic granulomatous disease. J Infect Dis. 1977 Oct;136(4):510–518. doi: 10.1093/infdis/136.4.510. [DOI] [PubMed] [Google Scholar]
  3. Allen R. C., Stjernholm R. L., Steele R. H. Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem Biophys Res Commun. 1972 May 26;47(4):679–684. doi: 10.1016/0006-291x(72)90545-1. [DOI] [PubMed] [Google Scholar]
  4. Allen R. C., Yevich S. J., Orth R. W., Steele R. H. The superoxide anion and singlet molecular oxygen: their role in the microbicidal activity of the polymorphonuclear leukocyte. Biochem Biophys Res Commun. 1974 Oct 8;60(3):909–917. doi: 10.1016/0006-291x(74)90401-x. [DOI] [PubMed] [Google Scholar]
  5. Allred C. D., Hill H. R. Effect of chemoattractants on chemiluminescence. Infect Immun. 1978 Mar;19(3):833–838. doi: 10.1128/iai.19.3.833-838.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Andersen B. R., Amirault H. J. Important variables in granulocyte chemiluminescence. Proc Soc Exp Biol Med. 1979 Oct;162(1):139–145. doi: 10.3181/00379727-162-40633. [DOI] [PubMed] [Google Scholar]
  7. Andersen B. R., Brendzel A. M., Lint T. F. Chemiluminescence spectra of human myeloperoxidase and polymorphonuclear leukocytes. Infect Immun. 1977 Jul;17(1):62–66. doi: 10.1128/iai.17.1.62-66.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Babior B. M., Curnutte J. T., McMurrich B. J. The particulate superoxide-forming system from human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst. J Clin Invest. 1976 Oct;58(4):989–996. doi: 10.1172/JCI108553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Barbour A. G., Allred C. D., Solberg C. O., Hill H. R. Chemiluminescence by polymorphonuclear leukocytes from patients with active bacterial infection. J Infect Dis. 1980 Jan;141(1):14–26. doi: 10.1093/infdis/141.1.14. [DOI] [PubMed] [Google Scholar]
  10. Bellanti J. A., Krasner R. I., Bartelloni P. J., Yang M. C., Beisel W. R. Sandfly fever: sequential changes in neutrophil biochemical and bactericidal functions. J Immunol. 1972 Jan;108(1):142–151. [PubMed] [Google Scholar]
  11. Brogan M. D., Sagone A. L., Jr The metabolic response of human phagocytic cells to killed mumps particles. J Reticuloendothel Soc. 1980 Jan;27(1):13–22. [PubMed] [Google Scholar]
  12. Cheson B. D., Curnette J. T., Babior B. M. The oxidative killing mechanisms of the neutrophil. Prog Clin Immunol. 1977;3:1–65. [PubMed] [Google Scholar]
  13. Curnutte J. T., Babior B. M. Effects of anaerobiosis and inhibitors on O2-production by human granulocytes. Blood. 1975 Jun;45(6):851–861. [PubMed] [Google Scholar]
  14. Curnutte J. T., Kipnes R. S., Babior B. M. Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the cranulocytes of patients with chronic granulomatous disease. N Engl J Med. 1975 Sep 25;293(13):628–632. doi: 10.1056/NEJM197509252931303. [DOI] [PubMed] [Google Scholar]
  15. Faden H., Sutyla P., Ogra P. L. Effect of viruses on luminol-dependent chemiluminescence of human neutrophils. Infect Immun. 1979 Jun;24(3):673–678. doi: 10.1128/iai.24.3.673-678.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldstein I. M., Cerqueira M., Lind S., Kaplan H. B. Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface. J Clin Invest. 1977 Feb;59(2):249–254. doi: 10.1172/JCI108635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goldstein I. M., Roos D., Kaplan H. B., Weissmann G. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J Clin Invest. 1975 Nov;56(5):1155–1163. doi: 10.1172/JCI108191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grebner J. V., Mills E. L., Gray G. H., Quie P. G. Comparison of phagocytic and chemiluminescence response of human polymorphonuclear neutrophils. J Lab Clin Med. 1977 Jan;89(1):153–159. [PubMed] [Google Scholar]
  19. Harvath L., Amirault H. J., Andersen B. R. Chemiluminescence of human and canine polymorphonuclear leukocytes in the absence of phagocytosis. J Clin Invest. 1978 May;61(5):1145–1154. doi: 10.1172/JCI109029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hellum K. B. Standardization of the nitroblue tetrazolium test. Influence of pH, dye concentration and sample storage. Scand J Infect Dis. 1977;9(2):125–130. doi: 10.3109/inf.1977.9.issue-2.12. [DOI] [PubMed] [Google Scholar]
  21. Hodgson E. K., Fridovich I. The production of superoxide radical during the decomposition of potassium peroxochromate(V). Biochemistry. 1974 Aug 27;13(18):3811–3815. doi: 10.1021/bi00715a030. [DOI] [PubMed] [Google Scholar]
  22. Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Iverson D. B., Wang-Iverson P., Spitznagel J. K., DeCHATELET L. R. Subcellular localization of NAD(P)H oxidase(s) in human neutrophilic polymorphonuclear leucocytes. Biochem J. 1978 Oct 15;176(1):175–178. doi: 10.1042/bj1760175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jahrling P. B., Hesse R. A., Eddy G. A., Johnson K. M., Callis R. T., Stephen E. L. Lassa virus infection of rhesus monkeys: pathogenesis and treatment with ribavirin. J Infect Dis. 1980 May;141(5):580–589. doi: 10.1093/infdis/141.5.580. [DOI] [PubMed] [Google Scholar]
  25. Klebanoff S. J., Pincus S. H. Hydrogen peroxide utilization in myeloperoxidase-deficient leukocytes: a possible microbicidal control mechanism. J Clin Invest. 1971 Oct;50(10):2226–2229. doi: 10.1172/JCI106718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klempner M. S., Dinarello C. A., Henderson W. R., Gallin J. I. Stimulation of neutrophil oxygen-dependent metabolism by human leukocytic pyrogen. J Clin Invest. 1979 Oct;64(4):996–1002. doi: 10.1172/JCI109566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Levine P. H., Weinger R. S., Simon J., Scoon K. L., Krinsky N. I. Leukocyte-platelet interaction. Release of hydrogen peroxide by granulocytes as a modulator of platelet reactions. J Clin Invest. 1976 Apr;57(4):955–963. doi: 10.1172/JCI108372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mangan D. F., Snyder I. S. Mannose-sensitive stimulation of human leukocyte chemiluminescence by Escherichia coli. Infect Immun. 1979 Dec;26(3):1014–1019. doi: 10.1128/iai.26.3.1014-1019.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McCall C. E., DeChatelet L. R., Cooper M. R., Shannon C. Human toxic neutrophils. 3. Metabolic characteristics. J Infect Dis. 1973 Jan;127(1):26–33. doi: 10.1093/infdis/127.1.26. [DOI] [PubMed] [Google Scholar]
  30. Moe J. B., Canonico P. G., Stookey J. L., Powanda M. C., Cockerell G. L. Pathogenesis of tularemia in immune and nonimmune rats. Am J Vet Res. 1975 Oct;36(10):1505–1510. [PubMed] [Google Scholar]
  31. Nelson R. D., Herron M. J., Schmidtke J. R., Simmons R. L. Chemiluminescence response of human leukocytes: influence of medium components on light production. Infect Immun. 1977 Sep;17(3):513–520. doi: 10.1128/iai.17.3.513-520.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Root R. K., Metcalf J. A. H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells. J Clin Invest. 1977 Dec;60(6):1266–1279. doi: 10.1172/JCI108886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Root R. K., Metcalf J., Oshino N., Chance B. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J Clin Invest. 1975 May;55(5):945–955. doi: 10.1172/JCI108024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rosen H., Klebanoff S. J. Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. J Clin Invest. 1976 Jul;58(1):50–60. doi: 10.1172/JCI108458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sagone A. L., Jr, Mendelson D. S., Metz E. N. The effect of sodium azide on the chemiluminescence of granulocytes--evidence for the generation of multiple oxygen radicals. J Lab Clin Med. 1977 Jun;89(6):1333–1340. [PubMed] [Google Scholar]
  36. Stevens P., Winston D. J., Van Dyke K. In vitro evaluation of opsonic and cellular granulocyte function by luminol-dependent chemiluminescence: utility in patients with severe neutropenia and cellular deficiency states. Infect Immun. 1978 Oct;22(1):41–51. doi: 10.1128/iai.22.1.41-51.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Webb L. S., Keele B. B., Jr, Johnston R. B., Jr Inhibition of phagocytosis-associated chemiluminescence by superoxide dismutase. Infect Immun. 1974 Jun;9(6):1051–1056. doi: 10.1128/iai.9.6.1051-1056.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES