Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(23):9290–9294. doi: 10.1073/pnas.87.23.9290

Sodium channels in the cytoplasm of Schwann cells.

J M Ritchie 1, J A Black 1, S G Waxman 1, K J Angelides 1
PMCID: PMC55150  PMID: 2174558

Abstract

Immunoblotting, ultrastructural immunocytochemistry, and tritiated saxitoxin ([3H]STX) binding experiments were used to study sodium channel localization in Schwann cells. Polyclonal antibody 7493, which is directed against purified sodium channels from rat brain, specifically recognizes a 260-kDa protein corresponding to the alpha subunit of the sodium channel in immunoblots of crude glycoproteins from rat sciatic nerve. Electron microscopic localization of sodium channel immunoreactivity within adult rat sciatic nerves reveals heavy staining of the axon membrane at the node of Ranvier, in contrast to the internodal axon membrane, which does not stain. Schwann cells including perinodal processes also exhibit antibody 7493 immunoreactivity, localized within both the cytoplasm and the plasmalemma of the Schwann cell. To examine further the possibility that sodium channels are localized within Schwann cell cytoplasm, [3H]STX binding was studied in cultured rabbit Schwann cells, both intact and after homogenization. Saturable binding of STX was significantly higher in homogenized Schwann cells (410 +/- 37 fmol/mg of protein) than in intact Schwann cells (214 +/- 21 fmol/mg of protein). Moreover, the equilibrium dissociation constant was higher for homogenized preparations (1.77 +/- 0.37 nM) than for intact Schwann cells (1.06 +/- 0.29 nM). These data suggest the presence of an intracellular pool of sodium channels or channel precursors in Schwann cells.

Full text

PDF
9290

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan S., Chiu S. Y., Gray P. T., Ritchie J. M. The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes. Proc R Soc Lond B Biol Sci. 1985 Sep 23;225(1240):299–313. doi: 10.1098/rspb.1985.0063. [DOI] [PubMed] [Google Scholar]
  2. Black J. A., Friedman B., Waxman S. G., Elmer L. W., Angelides K. J. Immuno-ultrastructural localization of sodium channels at nodes of Ranvier and perinodal astrocytes in rat optic nerve. Proc R Soc Lond B Biol Sci. 1989 Oct 23;238(1290):39–51. doi: 10.1098/rspb.1989.0065. [DOI] [PubMed] [Google Scholar]
  3. Black J. A., Waxman S. G., Friedman B., Elmer L. W., Angelides K. J. Sodium channels in astrocytes of rat optic nerve in situ: immuno-electron microscopic studies. Glia. 1989;2(5):353–369. doi: 10.1002/glia.440020508. [DOI] [PubMed] [Google Scholar]
  4. Chiu S. Y. Asymmetry currents in the mammalian myelinated nerve. J Physiol. 1980 Dec;309:499–519. doi: 10.1113/jphysiol.1980.sp013523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiu S. Y. Changes in excitable membrane properties in Schwann cells of adult rabbit sciatic nerves following nerve transection. J Physiol. 1988 Feb;396:173–188. doi: 10.1113/jphysiol.1988.sp016957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chiu S. Y., Schrager P., Ritchie J. M. Neuronal-type Na+ and K+ channels in rabbit cultured Schwann cells. Nature. 1984 Sep 13;311(5982):156–157. doi: 10.1038/311156a0. [DOI] [PubMed] [Google Scholar]
  7. Chiu S. Y. Sodium currents in axon-associated Schwann cells from adult rabbits. J Physiol. 1987 May;386:181–203. doi: 10.1113/jphysiol.1987.sp016529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elmer L. W., O'Brien B. J., Nutter T. J., Angelides K. J. Physicochemical characterization of the alpha-peptide of the sodium channel from rat brain. Biochemistry. 1985 Dec 31;24(27):8128–8137. doi: 10.1021/bi00348a044. [DOI] [PubMed] [Google Scholar]
  9. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  10. Gainer H., Tasaki I., Lasek R. J. Evidence for the glia-neuron protein transfer hypothesis from intracellular perfusion studies of squid giant axons. J Cell Biol. 1977 Aug;74(2):524–530. doi: 10.1083/jcb.74.2.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hildebrand C. Ultrastructural and light-microscopic studies of the nodal region in large myelinated fibres of the adult feline spinal cord white matter. Acta Physiol Scand Suppl. 1971;364:43–79. doi: 10.1111/j.1365-201x.1971.tb10978.x. [DOI] [PubMed] [Google Scholar]
  12. Howe J. R., Ritchie J. M. Sodium currents in Schwann cells from myelinated and non-myelinated nerves of neonatal and adult rabbits. J Physiol. 1990 Jun;425:169–210. doi: 10.1113/jphysiol.1990.sp018098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Meador-Woodruff J. H., Yoshino J. E., Bigbee J. W., Lewis B. L., Devries G. H. Differential proliferative responses of cultured Schwann cells to axolemma and myelin-enriched fractions. II. Morphological studies. J Neurocytol. 1985 Aug;14(4):619–635. doi: 10.1007/BF01200801. [DOI] [PubMed] [Google Scholar]
  15. Merril C. R., Dunau M. L., Goldman D. A rapid sensitive silver stain for polypeptides in polyacrylamide gels. Anal Biochem. 1981 Jan 1;110(1):201–207. doi: 10.1016/0003-2697(81)90136-6. [DOI] [PubMed] [Google Scholar]
  16. Neumcke B., Stämpfli R. Sodium currents and sodium-current fluctuations in rat myelinated nerve fibres. J Physiol. 1982 Aug;329:163–184. doi: 10.1113/jphysiol.1982.sp014296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  18. Quick D. C., Waxman S. G. Specific staining of the axon membrane at nodes of Ranvier with ferric ion and ferrocyanide. J Neurol Sci. 1977 Jan-Feb;31(1):1–11. doi: 10.1016/0022-510x(77)90002-8. [DOI] [PubMed] [Google Scholar]
  19. Raine C. S. On the association between perinodal astrocytic processes and the node of Ranvier in the C.N.S. J Neurocytol. 1984 Feb;13(1):21–27. doi: 10.1007/BF01148316. [DOI] [PubMed] [Google Scholar]
  20. Ritchie J. M. Distribution of saxitoxin-binding sites in mammalian neural tissue. Ann N Y Acad Sci. 1986;479:385–401. doi: 10.1111/j.1749-6632.1986.tb15584.x. [DOI] [PubMed] [Google Scholar]
  21. Ritchie J. M., Rogart R. B. Characterization of exchange-labeled saxitoxin and the origin of linear uptake by excitable tissue. Mol Pharmacol. 1977 Nov;13(6):1136–1146. [PubMed] [Google Scholar]
  22. Ritchie J. M., Rogart R. B. Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proc Natl Acad Sci U S A. 1977 Jan;74(1):211–215. doi: 10.1073/pnas.74.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ritchie J. M., Rogart R. B., Strichartz G. R. A new method for labelling saxitoxin and its binding to non-myelinated fibres of the rabbit vagus, lobster walking leg, and garfish olfactory nerves. J Physiol. 1976 Oct;261(2):477–494. doi: 10.1113/jphysiol.1976.sp011569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ritchie J. M., Rogart R. B. The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev Physiol Biochem Pharmacol. 1977;79:1–50. doi: 10.1007/BFb0037088. [DOI] [PubMed] [Google Scholar]
  25. Ritchie J. M. Sodium-channel turnover in rabbit cultured Schwann cells. Proc R Soc Lond B Biol Sci. 1988 May 23;233(1273):423–430. doi: 10.1098/rspb.1988.0031. [DOI] [PubMed] [Google Scholar]
  26. Rydmark M., Berthold C. H. Electron microscopic serial section analysis of nodes of Ranvier in lumbar spinal roots of the cat: a morphometric study of nodal compartments in fibres of different sizes. J Neurocytol. 1983 Aug;12(4):537–565. doi: 10.1007/BF01181523. [DOI] [PubMed] [Google Scholar]
  27. Schmidt J. W., Catterall W. A. Biosynthesis and processing of the alpha subunit of the voltage-sensitive sodium channel in rat brain neurons. Cell. 1986 Aug 1;46(3):437–444. doi: 10.1016/0092-8674(86)90664-1. [DOI] [PubMed] [Google Scholar]
  28. Schmidt J., Rossie S., Catterall W. A. A large intracellular pool of inactive Na channel alpha subunits in developing rat brain. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4847–4851. doi: 10.1073/pnas.82.14.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schröder H., Zilles K., Luiten P. G., Strosberg A. D. Immunocytochemical visualization of muscarinic cholinoceptors in the human cerebral cortex. Brain Res. 1990 Apr 30;514(2):249–258. doi: 10.1016/0006-8993(90)91420-l. [DOI] [PubMed] [Google Scholar]
  30. Schröder H., Zilles K., Maelicke A., Hajós F. Immunohisto- and cytochemical localization of cortical nicotinic cholinoceptors in rat and man. Brain Res. 1989 Nov 20;502(2):287–295. doi: 10.1016/0006-8993(89)90624-0. [DOI] [PubMed] [Google Scholar]
  31. Shrager P., Chiu S. Y., Ritchie J. M. Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells. Proc Natl Acad Sci U S A. 1985 Feb;82(3):948–952. doi: 10.1073/pnas.82.3.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tytell M., Lasek R. J. Glial polypeptides transferred into the squid giant axon. Brain Res. 1984 Dec 24;324(2):223–232. doi: 10.1016/0006-8993(84)90032-5. [DOI] [PubMed] [Google Scholar]
  34. Waechter C. J., Schmidt J. W., Catterall W. A. Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells. J Biol Chem. 1983 Apr 25;258(8):5117–5123. [PubMed] [Google Scholar]
  35. Waxman S. G., Black J. A. Freeze-fracture ultrastructure of the perinodal astrocyte and associated glial junctions. Brain Res. 1984 Aug 6;308(1):77–87. doi: 10.1016/0006-8993(84)90919-3. [DOI] [PubMed] [Google Scholar]
  36. Waxman S. G., Black J. A., Kocsis J. D., Ritchie J. M. Low density of sodium channels supports action potential conduction in axons of neonatal rat optic nerve. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1406–1410. doi: 10.1073/pnas.86.4.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Waxman S. G., Ritchie J. M. Organization of ion channels in the myelinated nerve fiber. Science. 1985 Jun 28;228(4707):1502–1507. doi: 10.1126/science.2409596. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES