Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(23):9363–9367. doi: 10.1073/pnas.87.23.9363

Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process.

A Borst 1, M Egelhaaf 1
PMCID: PMC55165  PMID: 2251278

Abstract

Direction selectivity of motion-sensitive neurons is generally thought to result from the nonlinear interaction between the signals derived from adjacent image points. Modeling of motion-sensitive networks, however, reveals that such elements may still respond to motion in a rather poor directionally selective way. Direction selectivity can be significantly enhanced if the nonlinear interaction is followed by another processing stage in which the signals of elements with opposite preferred directions are subtracted from each other. Our electrophysiological experiments in the fly visual system suggest that here direction selectivity is acquired in such a two-stage process.

Full text

PDF
9363

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelson E. H., Bergen J. R. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A. 1985 Feb;2(2):284–299. doi: 10.1364/josaa.2.000284. [DOI] [PubMed] [Google Scholar]
  2. Ariel M., Adolph A. R. Neurotransmitter inputs to directionally sensitive turtle retinal ganglion cells. J Neurophysiol. 1985 Nov;54(5):1123–1143. doi: 10.1152/jn.1985.54.5.1123. [DOI] [PubMed] [Google Scholar]
  3. Ariel M., Daw N. W. Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells. J Physiol. 1982 Mar;324:161–185. doi: 10.1113/jphysiol.1982.sp014105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barlow H. B., Levick W. R. The mechanism of directionally selective units in rabbit's retina. J Physiol. 1965 Jun;178(3):477–504. doi: 10.1113/jphysiol.1965.sp007638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borst A., Egelhaaf M. Principles of visual motion detection. Trends Neurosci. 1989 Aug;12(8):297–306. doi: 10.1016/0166-2236(89)90010-6. [DOI] [PubMed] [Google Scholar]
  6. Caldwell J. H., Daw N. W., Wyatt H. J. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J Physiol. 1978 Mar;276:277–298. doi: 10.1113/jphysiol.1978.sp012233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Egelhaaf M., Borst A., Pilz B. The role of GABA in detecting visual motion. Brain Res. 1990 Feb 12;509(1):156–160. doi: 10.1016/0006-8993(90)90325-6. [DOI] [PubMed] [Google Scholar]
  8. Egelhaaf M., Borst A., Reichardt W. Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system. J Opt Soc Am A. 1989 Jul;6(7):1070–1087. doi: 10.1364/josaa.6.001070. [DOI] [PubMed] [Google Scholar]
  9. Egelhaaf M., Borst A. Transient and steady-state response properties of movement detectors. J Opt Soc Am A. 1989 Jan;6(1):116–127. doi: 10.1364/josaa.6.000116. [DOI] [PubMed] [Google Scholar]
  10. Egelhaaf M., Hausen K., Reichardt W., Wehrhahn C. Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci. 1988 Aug;11(8):351–358. doi: 10.1016/0166-2236(88)90057-4. [DOI] [PubMed] [Google Scholar]
  11. Emerson R. C., Gerstein G. L. Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. J Neurophysiol. 1977 Jan;40(1):136–155. doi: 10.1152/jn.1977.40.1.136. [DOI] [PubMed] [Google Scholar]
  12. Ganz L., Felder R. Mechanism of directional selectivity in simple neurons of the cat's visual cortex analyzed with stationary flash sequences. J Neurophysiol. 1984 Feb;51(2):294–324. doi: 10.1152/jn.1984.51.2.294. [DOI] [PubMed] [Google Scholar]
  13. Grzywacz N. M., Koch C. Functional properties of models for direction selectivity in the retina. Synapse. 1987;1(5):417–434. doi: 10.1002/syn.890010506. [DOI] [PubMed] [Google Scholar]
  14. Götz K. G. Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik. 1964 Jun;2(2):77–92. doi: 10.1007/BF00288561. [DOI] [PubMed] [Google Scholar]
  15. Koch C., Poggio T., Torre V. Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci U S A. 1983 May;80(9):2799–2802. doi: 10.1073/pnas.80.9.2799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koch C., Poggio T., Torre V. Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos Trans R Soc Lond B Biol Sci. 1982 Jul 27;298(1090):227–263. doi: 10.1098/rstb.1982.0084. [DOI] [PubMed] [Google Scholar]
  17. Levick W. R., Oyster C. W., Takahashi E. Rabbit lateral geniculate nucleus: sharpener of directional information. Science. 1969 Aug 15;165(3894):712–714. doi: 10.1126/science.165.3894.712. [DOI] [PubMed] [Google Scholar]
  18. McCann G. D. The fundamental mechanism of motion detection in the insect visual system. Kybernetik. 1973 Feb;12(2):64–73. doi: 10.1007/BF00272462. [DOI] [PubMed] [Google Scholar]
  19. Mikami A., Newsome W. T., Wurtz R. H. Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. J Neurophysiol. 1986 Jun;55(6):1308–1327. doi: 10.1152/jn.1986.55.6.1308. [DOI] [PubMed] [Google Scholar]
  20. Movshon J. A., Thompson I. D., Tolhurst D. J. Receptive field organization of complex cells in the cat's striate cortex. J Physiol. 1978 Oct;283:79–99. doi: 10.1113/jphysiol.1978.sp012489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Poggio T., Reichardt W. Considerations on models of movement detection. Kybernetik. 1973 Nov;13(4):223–227. doi: 10.1007/BF00274887. [DOI] [PubMed] [Google Scholar]
  22. Reichardt W. Evaluation of optical motion information by movement detectors. J Comp Physiol A. 1987 Sep;161(4):533–547. doi: 10.1007/BF00603660. [DOI] [PubMed] [Google Scholar]
  23. Reichardt W. Processing of optical information by the visual system of the fly. Vision Res. 1986;26(1):113–126. doi: 10.1016/0042-6989(86)90075-1. [DOI] [PubMed] [Google Scholar]
  24. Riehle A., Franceschini N. Motion detection in flies: parametric control over ON-OFF pathways. Exp Brain Res. 1984;54(2):390–394. doi: 10.1007/BF00236243. [DOI] [PubMed] [Google Scholar]
  25. Sillito A. M. Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex. J Physiol. 1977 Oct;271(3):699–720. doi: 10.1113/jphysiol.1977.sp012021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Srinivasan M. V., Bernard G. D. A proposed mechanism for multiplication of neural signals. Biol Cybern. 1976 Feb 5;21(4):227–236. doi: 10.1007/BF00344168. [DOI] [PubMed] [Google Scholar]
  27. Wyatt H. J., Day N. W. Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. Science. 1976 Jan 16;191(4223):204–205. doi: 10.1126/science.1857. [DOI] [PubMed] [Google Scholar]
  28. van Santen J. P., Sperling G. Elaborated Reichardt detectors. J Opt Soc Am A. 1985 Feb;2(2):300–321. doi: 10.1364/josaa.2.000300. [DOI] [PubMed] [Google Scholar]
  29. van Santen J. P., Sperling G. Temporal covariance model of human motion perception. J Opt Soc Am A. 1984 May;1(5):451–473. doi: 10.1364/josaa.1.000451. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES