Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(23):9401–9405. doi: 10.1073/pnas.87.23.9401

Preferential binding of growth inhibitory prostaglandins by the target protein of a carcinogen.

S H Khan 1, S Sorof 1
PMCID: PMC55173  PMID: 2251282

Abstract

Liver fatty acid binding protein (L-FABP) is the principal target protein of the hepatic carcinogen N-(2-fluorenyl)acetamide (2-acetylaminofluorene) in rat liver. In addition, the cyclopentenone prostaglandins (PG), PGA, PGJ2, and delta 12-PGJ2, inhibit the growth of many cell types in vitro. This report describes the preferential binding of the growth inhibitory prostaglandins by L-FABP and the reversible inhibition of thymidine incorporation into DNA by PGA2 and delta 12-PGJ2 in primary cultures of purified rat hepatocytes. As a model ligand, [3H]PGA1 bound to L-FABP specifically, reversibly, rapidly, and with high affinity. Its dissociation constants were 134 nM (high affinity) and 3.6 microM (low affinity). The high-affinity binding of [3H]PGA1 was 9- and approximately 13-fold more avid than the binding of the conventional fatty acid ligands, oleic acid and arachidonic acid, respectively. The abilities of different prostaglandins to compete with the high-affinity binding of [3H]PGA1 correlated with their growth inhibitory activities reported previously and here. The growth inhibitory cyclopentenone prostaglandins (PGA1, PGA2, delta 12-PGJ2, and PGJ2) were the best competitive ligands, intermediate competitors were the weak growth inhibitors PGE1 and PGD2, and the poorest competitors were PGE2 and PGF2 alpha, which stimulate rather than inhibit DNA synthesis in rat hepatocytes in primary culture. The in vitro actions of L-FABP are compatible with those of a specific and dissociable carrier of growth inhibitory prostaglandins in rat hepatocytes and suggest that the carcinogen may usurp the cellular machinery of the growth inhibitory prostaglandins.

Full text

PDF
9401

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atsmon J., Freeman M. L., Meredith M. J., Sweetman B. J., Roberts L. J., 2nd Conjugation of 9-deoxy-delta 9,delta 12(E)-prostaglandin D2 with intracellular glutathione and enhancement of its antiproliferative activity by glutathione depletion. Cancer Res. 1990 Mar 15;50(6):1879–1885. [PubMed] [Google Scholar]
  2. Bansal M. P., Cook R. G., Danielson K. G., Medina D. A 14-kilodalton selenium-binding protein in mouse liver is fatty acid-binding protein. J Biol Chem. 1989 Aug 15;264(23):13780–13784. [PubMed] [Google Scholar]
  3. Bass N. M. The cellular fatty acid binding proteins: aspects of structure, regulation, and function. Int Rev Cytol. 1988;111:143–184. doi: 10.1016/s0074-7696(08)61733-7. [DOI] [PubMed] [Google Scholar]
  4. Bassuk J. A., Tsichlis P. N., Sorof S. Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7547–7551. doi: 10.1073/pnas.84.21.7547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhuyan B. K., Adams E. G., Badiner G. J., Li L. H., Barden K. Cell cycle effects of prostaglandins A1, A2, and D2 in human and murine melanoma cells in culture. Cancer Res. 1986 Apr;46(4 Pt 1):1688–1693. [PubMed] [Google Scholar]
  6. Blackburn G. R., Schnabel S. J., Danley J. M., Hogue-Angeletti R. A., Sorof S. Principal polypeptide target of carcinogen at the beginning of liver carcinogenesis by three carcinogens. Cancer Res. 1982 Nov;42(11):4664–4672. [PubMed] [Google Scholar]
  7. Brunk C. F., Jones K. C., James T. W. Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem. 1979 Jan 15;92(2):497–500. doi: 10.1016/0003-2697(79)90690-0. [DOI] [PubMed] [Google Scholar]
  8. Böhmer F. D., Kraft R., Otto A., Wernstedt C., Hellman U., Kurtz A., Müller T., Rohde K., Etzold G., Lehmann W. Identification of a polypeptide growth inhibitor from bovine mammary gland. Sequence homology to fatty acid- and retinoid-binding proteins. J Biol Chem. 1987 Nov 5;262(31):15137–15143. [PubMed] [Google Scholar]
  9. Böhmer F. D., Sun Q., Pepperle M., Müller T., Eriksson U., Wang J. L., Grosse R. Antibodies against mammary derived growth inhibitor (MDGI) react with a fibroblast growth inhibitor and with heart fatty acid binding protein. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1425–1431. doi: 10.1016/s0006-291x(87)80291-7. [DOI] [PubMed] [Google Scholar]
  10. Cagen L. M., Pisano J. J., Ketley J. N., Habig W. H., Jakoby W. B. The conjugation of prostaglandin A1 and glutathione catalyzed by homogeneous glutathione s-transferases from human and rat liver. Biochim Biophys Acta. 1975 Jul 22;398(1):205–208. doi: 10.1016/0005-2760(75)90184-8. [DOI] [PubMed] [Google Scholar]
  11. Chiabrando C., Noseda A., Novella Castagnoli M., Salmona M., Fanelli R. Characterization of arachidonic acid metabolic profiles in animal tissues by high-resolution gas chromatography-mass spectrometry. Biochim Biophys Acta. 1984 Jul 6;794(2):292–297. doi: 10.1016/0005-2760(84)90158-9. [DOI] [PubMed] [Google Scholar]
  12. Chytil F., Ong D. E. Intracellular vitamin A--binding proteins. Annu Rev Nutr. 1987;7:321–335. doi: 10.1146/annurev.nu.07.070187.001541. [DOI] [PubMed] [Google Scholar]
  13. Decker K. Eicosanoids, signal molecules of liver cells. Semin Liver Dis. 1985 May;5(2):175–190. doi: 10.1055/s-2008-1063921. [DOI] [PubMed] [Google Scholar]
  14. Dutta-Roy A. K., Gopalswamy N., Trulzsch D. V. Prostaglandin E1 binds to Z protein of rat liver. Eur J Biochem. 1987 Feb 2;162(3):615–619. doi: 10.1111/j.1432-1033.1987.tb10683.x. [DOI] [PubMed] [Google Scholar]
  15. Farber E., Cameron R. The sequential analysis of cancer development. Adv Cancer Res. 1980;31:125–226. doi: 10.1016/s0065-230x(08)60658-2. [DOI] [PubMed] [Google Scholar]
  16. Fitzpatrick F. A., Waynalda M. A. Albumin-lipid interactions: prostaglandin stability as a probe for characterizing binding sites on vertebrate albumins. Biochemistry. 1981 Oct 13;20(21):6129–6134. doi: 10.1021/bi00524a033. [DOI] [PubMed] [Google Scholar]
  17. Fitzpatrick F. A., Wynalda M. A. Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro. J Biol Chem. 1983 Oct 10;258(19):11713–11718. [PubMed] [Google Scholar]
  18. Fukushima M., Kato T., Narumiya S., Mizushima Y., Sasaki H., Terashima Y., Nishiyama Y., Santoro M. G. Prostaglandin A and J: antitumor and antiviral prostaglandins. Adv Prostaglandin Thromboxane Leukot Res. 1989;19:415–418. [PubMed] [Google Scholar]
  19. GRISHAM J. W. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 1962 Aug;22:842–849. [PubMed] [Google Scholar]
  20. Gordon J. I., Alpers D. H., Ockner R. K., Strauss A. W. The nucleotide sequence of rat liver fatty acid binding protein mRNA. J Biol Chem. 1983 Mar 10;258(5):3356–3363. [PubMed] [Google Scholar]
  21. Ham E. A., Oien H. G., Ulm E. H., Kuehl F. A., Jr The reaction of PGA1 with sulfhydryl groups; a component in the binding of A-type prostaglandins to proteins. Prostaglandins. 1975 Aug;10(2):217–229. doi: 10.1016/0090-6980(75)90041-6. [DOI] [PubMed] [Google Scholar]
  22. Hirata Y., Hayashi H., Ito S., Kikawa Y., Ishibashi M., Sudo M., Miyazaki H., Fukushima M., Narumiya S., Hayaishi O. Occurrence of 9-deoxy-delta 9,delta 12-13,14-dihydroprostaglandin D2 in human urine. J Biol Chem. 1988 Nov 15;263(32):16619–16625. [PubMed] [Google Scholar]
  23. Honn K. V., Dunn J. R., 2nd, Morgan L. R., Bienkowski M., Marnett L. J. Inhibition of DNA synthesis in Harding-Passey melanoma cells by prostaglandins A1 and A2: comparison with chemotherapeutic agents. Biochem Biophys Res Commun. 1979 Apr 13;87(3):795–801. doi: 10.1016/0006-291x(79)92028-x. [DOI] [PubMed] [Google Scholar]
  24. Honn K. V., Marnett L. J. Requirement of a reactive alpha, beta-unsaturated carbonyl for inhibition of tumor growth and induction of differentiation by "A" series prostaglandins. Biochem Biophys Res Commun. 1985 May 31;129(1):34–40. doi: 10.1016/0006-291x(85)91398-1. [DOI] [PubMed] [Google Scholar]
  25. Hsu Y. M., Wang J. L. Growth control in cultured 3T3 fibroblasts. V. Purification of an Mr 13,000 polypeptide responsible for growth inhibitory activity. J Cell Biol. 1986 Feb;102(2):362–369. doi: 10.1083/jcb.102.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hughes-Fulford M., Wu J., Kato T., Fukushima M. Inhibition of DNA synthesis and cell cycle by prostaglandins independent of cyclic AMP. Adv Prostaglandin Thromboxane Leukot Res. 1985;15:401–404. [PubMed] [Google Scholar]
  27. Jonsson H. T., Jr, Powers R. E. Endogenous prostaglandin as (PGAs): fact or artifact in biological systems. Prog Lipid Res. 1981;20:787–790. doi: 10.1016/0163-7827(81)90147-8. [DOI] [PubMed] [Google Scholar]
  28. Kaikaus R. M., Bass N. M., Ockner R. K. Functions of fatty acid binding proteins. Experientia. 1990 Jun 15;46(6):617–630. doi: 10.1007/BF01939701. [DOI] [PubMed] [Google Scholar]
  29. Ketterer B., Tipping E., Hackney J. F., Beale D. A low-molecular-weight protein from rat liver that resembles ligandin in its binding properties. Biochem J. 1976 Jun 1;155(3):511–521. doi: 10.1042/bj1550511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kikawa Y., Narumiya S., Fukushima M., Wakatsuka H., Hayaishi O. 9-Deoxy-delta 9, delta 12-13,14-dihydroprostaglandin D2, a metabolite of prostaglandin D2 formed in human plasma. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1317–1321. doi: 10.1073/pnas.81.5.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kuiper J., Zijlstra F. J., Kamps J. A., van Berkel T. J. Identification of prostaglandin D2 as the major eicosanoid from liver endothelial and Kupffer cells. Biochim Biophys Acta. 1988 Mar 25;959(2):143–152. doi: 10.1016/0005-2760(88)90025-2. [DOI] [PubMed] [Google Scholar]
  32. Narumiya S., Fukushima M. Site and mechanism of growth inhibition by prostaglandins. I. Active transport and intracellular accumulation of cyclopentenone prostaglandins, a reaction leading to growth inhibition. J Pharmacol Exp Ther. 1986 Nov;239(2):500–505. [PubMed] [Google Scholar]
  33. Narumiya S., Ohno K., Fujiwara M., Fukushima M. Site and mechanism of growth inhibition by prostaglandins. II. Temperature-dependent transfer of a cyclopentenone prostaglandin to nuclei. J Pharmacol Exp Ther. 1986 Nov;239(2):506–511. [PubMed] [Google Scholar]
  34. Narumiya S., Ohno K., Fukushima M., Fujiwara M. Site and mechanism of growth inhibition by prostaglandins. III. Distribution and binding of prostaglandin A2 and delta 12-prostaglandin J2 in nuclei. J Pharmacol Exp Ther. 1987 Jul;242(1):306–311. [PubMed] [Google Scholar]
  35. Ohno K., Fujiwara M., Fukushima M., Narumiya S. Metabolic dehydration of prostaglandin E2 and cellular uptake of the dehydration product: correlation with prostaglandin E2-induced growth inhibition. Biochem Biophys Res Commun. 1986 Sep 14;139(2):808–815. doi: 10.1016/s0006-291x(86)80062-6. [DOI] [PubMed] [Google Scholar]
  36. Ohno K., Sakai T., Fukushima M., Narumiya S., Fujiwara M. Site and mechanism of growth inhibition by prostaglandins. IV. Effect of cyclopentenone prostaglandins on cell cycle progression of G1-enriched HeLa S3 cells. J Pharmacol Exp Ther. 1988 Apr;245(1):294–298. [PubMed] [Google Scholar]
  37. Raza H., Pongubala J. R., Sorof S. Specific high affinity binding of lipoxygenase metabolites of arachidonic acid by liver fatty acid binding protein. Biochem Biophys Res Commun. 1989 Jun 15;161(2):448–455. doi: 10.1016/0006-291x(89)92619-3. [DOI] [PubMed] [Google Scholar]
  38. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  39. Skouteris G. G., Ord M. G., Stocken L. A. Regulation of the proliferation of primary rat hepatocytes by eicosanoids. J Cell Physiol. 1988 Jun;135(3):516–520. doi: 10.1002/jcp.1041350321. [DOI] [PubMed] [Google Scholar]
  40. Smith W. L. The eicosanoids and their biochemical mechanisms of action. Biochem J. 1989 Apr 15;259(2):315–324. doi: 10.1042/bj2590315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sweetser D. A., Heuckeroth R. O., Gordon J. I. The metabolic significance of mammalian fatty-acid-binding proteins: abundant proteins in search of a function. Annu Rev Nutr. 1987;7:337–359. doi: 10.1146/annurev.nu.07.070187.002005. [DOI] [PubMed] [Google Scholar]
  42. Sweetser D. A., Lowe J. B., Gordon J. I. The nucleotide sequence of the rat liver fatty acid-binding protein gene. Evidence that exon 1 encodes an oligopeptide domain shared by a family of proteins which bind hydrophobic ligands. J Biol Chem. 1986 Apr 25;261(12):5553–5561. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES