Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1990 May;9(5):1465–1469. doi: 10.1002/j.1460-2075.1990.tb08263.x

Bacteriorhodopsin drives the glutamate transporter of synaptic vesicles after co-reconstitution.

P R Maycox 1, T Deckwerth 1, R Jahn 1
PMCID: PMC551836  PMID: 1970294

Abstract

Active accumulation of neurotransmitters by synaptic vesicles is an essential component of the synaptic transmission cycle. Isolated vesicles show energy-dependent uptake of several transmitters by processes which are apparently mediated by a proton electrochemical potential across the vesicle membrane. Although this energy gradient is probably generated by a proton ATPase, the functional separation of ATP cleavage and transmitter uptake activity has only been shown clearly for monoamine transport. We report here that the light-driven proton pump, bacteriorhodopsin, can replace the endogenous proton ATPase in proteoliposomes reconstituted from vesicular detergent extracts. The system shows light-dependent uptake of glutamate with properties very similar to those observed in intact vesicles, e.g. chloride dependence or stimulation by NH4+. Our experiments show that the proton pump and the glutamate transporter are separate entities and provide a powerful tool for further characterization of the glutamate carrier.

Full text

PDF
1465

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai H., Berne M., Forgac M. Inhibition of the coated vesicle proton pump and labeling of a 17,000-dalton polypeptide by N,N'-dicyclohexylcarbodiimide. J Biol Chem. 1987 Aug 15;262(23):11006–11011. [PubMed] [Google Scholar]
  2. Burger P. M., Mehl E., Cameron P. L., Maycox P. R., Baumert M., Lottspeich F., De Camilli P., Jahn R. Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate. Neuron. 1989 Dec;3(6):715–720. doi: 10.1016/0896-6273(89)90240-7. [DOI] [PubMed] [Google Scholar]
  3. Ceccarelli B., Hurlbut W. P. Vesicle hypothesis of the release of quanta of acetylcholine. Physiol Rev. 1980 Apr;60(2):396–441. doi: 10.1152/physrev.1980.60.2.396. [DOI] [PubMed] [Google Scholar]
  4. Disbrow J. K., Gershten M. J., Ruth J. A. Uptake of L-[3H] glutamic acid by crude and purified synaptic vesicles from rat brain. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1221–1227. doi: 10.1016/0006-291x(82)92130-1. [DOI] [PubMed] [Google Scholar]
  5. Fykse E. M., Fonnum F. Uptake of gamma-aminobutyric acid by a synaptic vesicle fraction isolated from rat brain. J Neurochem. 1988 Apr;50(4):1237–1242. doi: 10.1111/j.1471-4159.1988.tb10599.x. [DOI] [PubMed] [Google Scholar]
  6. Gasnier B., Scherman D., Henry J. P. Dicyclohexylcarbodiimide inhibits the monoamine carrier of bovine chromaffin granule membrane. Biochemistry. 1985 Feb 26;24(5):1239–1244. doi: 10.1021/bi00326a028. [DOI] [PubMed] [Google Scholar]
  7. Hell J. W., Maycox P. R., Jahn R. Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles. J Biol Chem. 1990 Feb 5;265(4):2111–2117. [PubMed] [Google Scholar]
  8. Hell J. W., Maycox P. R., Stadler H., Jahn R. Uptake of GABA by rat brain synaptic vesicles isolated by a new procedure. EMBO J. 1988 Oct;7(10):3023–3029. doi: 10.1002/j.1460-2075.1988.tb03166.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huang K. S., Bayley H., Khorana H. G. Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid. Proc Natl Acad Sci U S A. 1980 Jan;77(1):323–327. doi: 10.1073/pnas.77.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson R. G., Jr Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol Rev. 1988 Jan;68(1):232–307. doi: 10.1152/physrev.1988.68.1.232. [DOI] [PubMed] [Google Scholar]
  11. Kish P. E., Fischer-Bovenkerk C., Ueda T. Active transport of gamma-aminobutyric acid and glycine into synaptic vesicles. Proc Natl Acad Sci U S A. 1989 May;86(10):3877–3881. doi: 10.1073/pnas.86.10.3877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koenigsberger R., Parsons S. M. Bicarbonate and magnesium ion-ATP dependent stimulation of acetylcholine uptake by Torpedo electric organ synaptic vesicles. Biochem Biophys Res Commun. 1980 May 14;94(1):305–312. doi: 10.1016/s0006-291x(80)80221-x. [DOI] [PubMed] [Google Scholar]
  13. Krupinski J., Hammes G. G. Steady-state ATP synthesis by bacteriorhodopsin and chloroplast coupling factor co-reconstituted into asolectin vesicles. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4233–4237. doi: 10.1073/pnas.83.12.4233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lugtenburg J., Mathies R. A., Griffin R. G., Herzfeld J. Structure and function of rhodopsins from solid state NMR and resonance Raman spectroscopy of isotopic retinal derivatives. Trends Biochem Sci. 1988 Oct;13(10):388–393. doi: 10.1016/0968-0004(88)90181-8. [DOI] [PubMed] [Google Scholar]
  15. Maron R., Stern Y., Kanner B. I., Schuldiner S. Functional asymmetry of the amine transporter from chromaffin granules. J Biol Chem. 1983 Oct 10;258(19):11476–11481. [PubMed] [Google Scholar]
  16. Maycox P. R., Deckwerth T., Hell J. W., Jahn R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J Biol Chem. 1988 Oct 25;263(30):15423–15428. [PubMed] [Google Scholar]
  17. Maycox P. R., Hell J. W., Jahn R. Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci. 1990 Mar;13(3):83–87. doi: 10.1016/0166-2236(90)90178-d. [DOI] [PubMed] [Google Scholar]
  18. Naito S., Ueda T. Characterization of glutamate uptake into synaptic vesicles. J Neurochem. 1985 Jan;44(1):99–109. doi: 10.1111/j.1471-4159.1985.tb07118.x. [DOI] [PubMed] [Google Scholar]
  19. Nelson N., Cidon S., Moriyama Y. Chromaffin granule proton pump. Methods Enzymol. 1988;157:619–633. doi: 10.1016/0076-6879(88)57110-0. [DOI] [PubMed] [Google Scholar]
  20. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  21. Racker E., Violand B., O'Neal S., Alfonzo M., Telford J. Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes. Arch Biochem Biophys. 1979 Dec;198(2):470–477. doi: 10.1016/0003-9861(79)90521-6. [DOI] [PubMed] [Google Scholar]
  22. Wagner N., Gutweiler M., Pabst R., Dose K. Coreconstitution of bacterial ATP synthase with monomeric bacteriorhodopsin into liposomes. A comparison between the efficiency of monomeric bacteriorhodopsin and purple membrane patches in coreconstitution experiments. Eur J Biochem. 1987 May 15;165(1):177–183. doi: 10.1111/j.1432-1033.1987.tb11209.x. [DOI] [PubMed] [Google Scholar]
  23. Whittaker V. P., Michaelson I. A., Kirkland R. J. The separation of synaptic vesicles from nerve-ending particles ('synaptosomes'). Biochem J. 1964 Feb;90(2):293–303. doi: 10.1042/bj0900293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xie X. S., Tsai S. J., Stone D. K. Lipid requirements for reconstitution of the proton-translocating complex of clathrin-coated vesicles. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8913–8917. doi: 10.1073/pnas.83.23.8913. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES