Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1990 Jun;9(6):1859–1866. doi: 10.1002/j.1460-2075.1990.tb08311.x

Selective photochemical treatment of oestrogen receptor in a Xenopus liver extract destroys hormone binding and transcriptional activation but not DNA binding.

N A Cridland 1, C V Wright 1, E A McKenzie 1, J Knowland 1
PMCID: PMC551891  PMID: 2347307

Abstract

Photochemical excitation of a simple derivative of oestradiol using light in the UV-A range totally, permanently and selectively inactivates the oestrogen receptor protein present in a Xenopus liver extract without affecting its overall size. Inactivation of the binding site proceeds to completion with simple, first-order kinetics. Inactivation is prevented by excess oestradiol but not by non-oestrogenic steroids. Using an in vitro transcription system, we show that the treatment eliminates transcription of vitellogenin genes, which are normally oestrogen-responsive, but has no effect on the transcription of albumin genes, which are not. Native receptor binds to the two imperfectly palindromic sequences in the vitellogenin B2 gene which together constitute an oestrogen-response unit. Its affinity for one sequence is greater than its affinity for the other, suggesting that a compulsory binding order operates when receptor interacts with the B2 gene. Photoinactivated receptor still binds to both sequences, but with reduced affinity. We also discuss our findings in the context of the current concern over the effects of UV-A on human tissues.

Full text

PDF
1859

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Everett M. A., Yeargers E., Sayre R. M., Olson R. L. Penetration of epidermis by ultraviolet rays. Photochem Photobiol. 1966 Jul;5(7):533–542. doi: 10.1111/j.1751-1097.1966.tb09843.x. [DOI] [PubMed] [Google Scholar]
  2. Germond J. E., ten Heggeler B., Schubiger J. L., Walker P., Westley B., Wahli W. Vitellogenin B2 gene in Xenopus laevis: isolation, in vitro transcription and relation to other vitellogenin genes. Nucleic Acids Res. 1983 May 25;11(10):2979–2997. doi: 10.1093/nar/11.10.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Katzenellenbogen J. A., Carlson K. E., Johnson H. J., Jr, Myers H. N. Chemical probes of estrogen action: affinity labeling. J Toxicol Environ Health Suppl. 1976;1:205–230. [PubMed] [Google Scholar]
  4. Katzenellenbogen J. A., Johnson H. J., Jr, Carlson K. E., Myers H. N. Photoreactivity of some light-sensitive estrogen derivatives. Use of an exchange assay to determine their photointeraction with the rat uterine estrogen binding protein. Biochemistry. 1974 Jul 2;13(14):2986–2994. doi: 10.1021/bi00711a031. [DOI] [PubMed] [Google Scholar]
  5. Kazmaier M., Brüning E., Ryffel G. U. Post-transcriptional regulation of albumin gene expression in Xenopus liver. EMBO J. 1985 May;4(5):1261–1266. doi: 10.1002/j.1460-2075.1985.tb03770.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Klein-Hitpass L., Kaling M., Ryffel G. U. Synergism of closely adjacent estrogen-responsive elements increases their regulatory potential. J Mol Biol. 1988 Jun 5;201(3):537–544. doi: 10.1016/0022-2836(88)90635-3. [DOI] [PubMed] [Google Scholar]
  7. Klein-Hitpass L., Tsai S. Y., Greene G. L., Clark J. H., Tsai M. J., O'Malley B. W. Specific binding of estrogen receptor to the estrogen response element. Mol Cell Biol. 1989 Jan;9(1):43–49. doi: 10.1128/mcb.9.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Knuppen R., Haupt O., Hoppen H. O. Synthesis of [2H8] estradiol, [2H7] estrone, [2H6] 2-hydroxyestrone and [2H6] 4-hydroxyestrone as internal standards for selected ion monitoring. Steroids. 1982 Jun;39(6):667–673. doi: 10.1016/0039-128x(82)90137-4. [DOI] [PubMed] [Google Scholar]
  9. Kumar V., Green S., Staub A., Chambon P. Localisation of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J. 1986 Sep;5(9):2231–2236. doi: 10.1002/j.1460-2075.1986.tb04489.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Martinez E., Wahli W. Cooperative binding of estrogen receptor to imperfect estrogen-responsive DNA elements correlates with their synergistic hormone-dependent enhancer activity. EMBO J. 1989 Dec 1;8(12):3781–3791. doi: 10.1002/j.1460-2075.1989.tb08555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Martyr R. J., Benisek W. F. Chemical modification of amino acid residues associated with the delta-4-3-ketosteroid-dependent photoinactivation of delta-5-3-ketosteroid isomerase. J Biol Chem. 1975 Feb 25;250(4):1218–1222. [PubMed] [Google Scholar]
  12. May F. E., Weber R., Westley B. R. Isolation and characterisation of the Xenopus laevis albumin genes: loss of 74K albumin gene sequences by library amplification. Nucleic Acids Res. 1982 May 11;10(9):2791–2807. doi: 10.1093/nar/10.9.2791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Metzger D., White J. H., Chambon P. The human oestrogen receptor functions in yeast. Nature. 1988 Jul 7;334(6177):31–36. doi: 10.1038/334031a0. [DOI] [PubMed] [Google Scholar]
  14. Ogez J. R., Tivol W. F., Benisek W. F. A novel chemical modification of delta 5-3-ketosteroid isomerase occurring during its 3-oxo-4-estren-17 beta-yl acetate-dependent photoinactivation. J Biol Chem. 1977 Sep 10;252(17):6151–6155. [PubMed] [Google Scholar]
  15. Roza L., Baan R. A., van der Leun J. C., Kligman L., Young A. R. UVA hazards in skin associated with the use of tanning equipment. J Photochem Photobiol B. 1989 Apr;3(2):281–287. doi: 10.1016/1011-1344(89)80069-7. [DOI] [PubMed] [Google Scholar]
  16. Tora L., Mullick A., Metzger D., Ponglikitmongkol M., Park I., Chambon P. The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EMBO J. 1989 Jul;8(7):1981–1986. doi: 10.1002/j.1460-2075.1989.tb03604.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tsai S. Y., Tsai M. J., O'Malley B. W. Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell. 1989 May 5;57(3):443–448. doi: 10.1016/0092-8674(89)90919-7. [DOI] [PubMed] [Google Scholar]
  18. Tyrrell R. M., Pidoux M. Singlet oxygen involvement in the inactivation of cultured human fibroblasts by UVA (334 nm, 365 nm) and near-visible (405 nm) radiations. Photochem Photobiol. 1989 Apr;49(4):407–412. doi: 10.1111/j.1751-1097.1989.tb09187.x. [DOI] [PubMed] [Google Scholar]
  19. Wahli W. Evolution and expression of vitellogenin genes. Trends Genet. 1988 Aug;4(8):227–232. doi: 10.1016/0168-9525(88)90155-2. [DOI] [PubMed] [Google Scholar]
  20. Walker P., Germond J. E., Brown-Luedi M., Givel F., Wahli W. Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes. Nucleic Acids Res. 1984 Nov 26;12(22):8611–8626. doi: 10.1093/nar/12.22.8611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wangh L. J., Knowland J. Synthesis of vitellogenin in cultures of male and female frog liver regulated by estradiol treatment in vitro. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3172–3175. doi: 10.1073/pnas.72.8.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Waterman M. L., Adler S., Nelson C., Greene G. L., Evans R. M., Rosenfeld M. G. A single domain of the estrogen receptor confers deoxyribonucleic acid binding and transcriptional activation of the rat prolactin gene. Mol Endocrinol. 1988 Jan;2(1):14–21. doi: 10.1210/mend-2-1-14. [DOI] [PubMed] [Google Scholar]
  23. Webster N. J., Green S., Tasset D., Ponglikitmongkol M., Chambon P. The transcriptional activation function located in the hormone-binding domain of the human oestrogen receptor is not encoded in a single exon. EMBO J. 1989 May;8(5):1441–1446. doi: 10.1002/j.1460-2075.1989.tb03526.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Westley B., Knowland J. An estrogen receptor from Xenopus laevis liver possibly connected with vitellogenin synthesis. Cell. 1978 Oct;15(2):367–374. doi: 10.1016/0092-8674(78)90005-3. [DOI] [PubMed] [Google Scholar]
  25. Westley B., May F. E., Brown A. M., Krust A., Chambon P., Lippman M. E., Rochefort H. Effects of antiestrogens on the estrogen-regulated pS2 RNA and the 52- and 160-kilodalton proteins in MCF7 cells and two tamoxifen-resistant sublines. J Biol Chem. 1984 Aug 25;259(16):10030–10035. [PubMed] [Google Scholar]
  26. Wright C. V., Wright S. C., Knowland J. Partial purification of estradiol receptor from Xenopus laevis liver and levels of receptor in relation to estradiol concentration. EMBO J. 1983;2(6):973–977. doi: 10.1002/j.1460-2075.1983.tb01530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. ten Heggeler-Bordier B., Hipskind R., Seiler-Tuyns A., Martinez E., Corthésy B., Wahli W. Electron microscopic visualization of protein-DNA interactions at the estrogen responsive element and in the first intron of the Xenopus laevis vitellogenin gene. EMBO J. 1987 Jun;6(6):1715–1720. doi: 10.1002/j.1460-2075.1987.tb02422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES