Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(23):9491–9494. doi: 10.1073/pnas.87.23.9491

A recombinant single-chain immunotoxin composed of anti-Tac variable regions and a truncated diphtheria toxin.

V K Chaudhary 1, M G Gallo 1, D J FitzGerald 1, I Pastan 1
PMCID: PMC55192  PMID: 2251289

Abstract

To kill human or primate cells expressing the p55 subunit of the interleukin 2 receptor, we have constructed a single-chain immunotoxin. DNA sequences encoding the first 388 amino acids of diphtheria toxin (DT) were fused to DNA elements encoding the antigen-binding portion (variable region or Fv) of the anti-Tac monoclonal antibody. The antigen-binding portion consists of 116 amino acids of the heavy-chain variable region connected by a 15-amino acid linker to 106 amino acids of the variable region of the light chain. The single-chain immunotoxin DT388-anti-Tac(Fv) was expressed in Escherichia coli and found in inclusion bodies. The monomeric form was then purified to near homogeneity with a high yield (3-5 mg/liter). Monomeric DT388-anti-Tac(Fv) was highly cytotoxic to cell lines bearing the p55 subunit of the human interleukin 2 receptor but not to cells without this subunit. DT388-anti-Tac(Fv) was also very effective in killing proliferating human T cells produced in a mixed leukocyte reaction.

Full text

PDF
9491

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batra J. K., FitzGerald D., Gately M., Chaudhary V. K., Pastan I. Anti-Tac(Fv)-PE40, a single chain antibody Pseudomonas fusion protein directed at interleukin 2 receptor bearing cells. J Biol Chem. 1990 Sep 5;265(25):15198–15202. [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Case J. P., Lorberboum-Galski H., Lafyatis R., FitzGerald D., Wilder R. L., Pastan I. Chimeric cytotoxin IL2-PE40 delays and mitigates adjuvant-induced arthritis in rats. Proc Natl Acad Sci U S A. 1989 Jan;86(1):287–291. doi: 10.1073/pnas.86.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chaudhary V. K., FitzGerald D. J., Adhya S., Pastan I. Activity of a recombinant fusion protein between transforming growth factor type alpha and Pseudomonas toxin. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4538–4542. doi: 10.1073/pnas.84.13.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaudhary V. K., Mizukami T., Fuerst T. R., FitzGerald D. J., Moss B., Pastan I., Berger E. A. Selective killing of HIV-infected cells by recombinant human CD4-Pseudomonas exotoxin hybrid protein. Nature. 1988 Sep 22;335(6188):369–372. doi: 10.1038/335369a0. [DOI] [PubMed] [Google Scholar]
  6. Chaudhary V. K., Queen C., Junghans R. P., Waldmann T. A., FitzGerald D. J., Pastan I. A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature. 1989 Jun 1;339(6223):394–397. doi: 10.1038/339394a0. [DOI] [PubMed] [Google Scholar]
  7. FitzGerald D. J., Willingham M. C., Pastan I. Pseudomonas exotoxin--immunotoxins. Cancer Treat Res. 1988;37:161–173. doi: 10.1007/978-1-4613-1083-9_11. [DOI] [PubMed] [Google Scholar]
  8. Griffin T. W., Morgan A. C., Blythman H. E. Immunotoxin therapy: assessment by animal models. Cancer Treat Res. 1988;37:433–455. doi: 10.1007/978-1-4613-1083-9_24. [DOI] [PubMed] [Google Scholar]
  9. Hatakeyama M., Minamoto S., Uchiyama T., Hardy R. R., Yamada G., Taniguchi T. Reconstitution of functional receptor for human interleukin-2 in mouse cells. Nature. 1985 Dec 5;318(6045):467–470. doi: 10.1038/318467a0. [DOI] [PubMed] [Google Scholar]
  10. Hwang J., Fitzgerald D. J., Adhya S., Pastan I. Functional domains of Pseudomonas exotoxin identified by deletion analysis of the gene expressed in E. coli. Cell. 1987 Jan 16;48(1):129–136. doi: 10.1016/0092-8674(87)90363-1. [DOI] [PubMed] [Google Scholar]
  11. Kiyokawa T., Shirono K., Hattori T., Nishimura H., Yamaguchi K., Nichols J. C., Strom T. B., Murphy J. R., Takatsuki K. Cytotoxicity of interleukin 2-toxin toward lymphocytes from patients with adult T-cell leukemia. Cancer Res. 1989 Jul 15;49(14):4042–4046. [PubMed] [Google Scholar]
  12. Laurent G., Frankel A. E., Hertler A. A., Schlossman D. M., Casellas P., Jansen F. K. Treatment of leukemia patients with T101 ricin A chain immunotoxins. Cancer Treat Res. 1988;37:483–491. doi: 10.1007/978-1-4613-1083-9_27. [DOI] [PubMed] [Google Scholar]
  13. Lorberboum-Galski H., Barrett L. V., Kirkman R. L., Ogata M., Willingham M. C., FitzGerald D. J., Pastan I. Cardiac allograft survival in mice treated with IL-2-PE40. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1008–1012. doi: 10.1073/pnas.86.3.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murphy J. R., Bishai W., Borowski M., Miyanohara A., Boyd J., Nagle S. Genetic construction, expression, and melanoma-selective cytotoxicity of a diphtheria toxin-related alpha-melanocyte-stimulating hormone fusion protein. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8258–8262. doi: 10.1073/pnas.83.21.8258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pastan I., FitzGerald D. Pseudomonas exotoxin: chimeric toxins. J Biol Chem. 1989 Sep 15;264(26):15157–15160. [PubMed] [Google Scholar]
  16. Pastan I., Willingham M. C., FitzGerald D. J. Immunotoxins. Cell. 1986 Dec 5;47(5):641–648. doi: 10.1016/0092-8674(86)90506-4. [DOI] [PubMed] [Google Scholar]
  17. Siegall C. B., Chaudhary V. K., FitzGerald D. J., Pastan I. Cytotoxic activity of an interleukin 6-Pseudomonas exotoxin fusion protein on human myeloma cells. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9738–9742. doi: 10.1073/pnas.85.24.9738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Uchiyama T., Broder S., Waldmann T. A. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. J Immunol. 1981 Apr;126(4):1393–1397. [PubMed] [Google Scholar]
  19. Vallera D. A., Myers D. E. Immunotoxins containing ricin. Cancer Treat Res. 1988;37:141–159. doi: 10.1007/978-1-4613-1083-9_10. [DOI] [PubMed] [Google Scholar]
  20. Vitetta E. S., Fulton R. J., May R. D., Till M., Uhr J. W. Redesigning nature's poisons to create anti-tumor reagents. Science. 1987 Nov 20;238(4830):1098–1104. doi: 10.1126/science.3317828. [DOI] [PubMed] [Google Scholar]
  21. Williams D. P., Parker K., Bacha P., Bishai W., Borowski M., Genbauffe F., Strom T. B., Murphy J. R. Diphtheria toxin receptor binding domain substitution with interleukin-2: genetic construction and properties of a diphtheria toxin-related interleukin-2 fusion protein. Protein Eng. 1987 Dec;1(6):493–498. doi: 10.1093/protein/1.6.493. [DOI] [PubMed] [Google Scholar]
  22. Williams D. P., Snider C. E., Strom T. B., Murphy J. R. Structure/function analysis of interleukin-2-toxin (DAB486-IL-2). Fragment B sequences required for the delivery of fragment A to the cytosol of target cells. J Biol Chem. 1990 Jul 15;265(20):11885–11889. [PubMed] [Google Scholar]
  23. Youle R. J., Greenfield L., Johnson V. G. Genetic engineering of immunotoxins. Cancer Treat Res. 1988;37:113–122. doi: 10.1007/978-1-4613-1083-9_8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES