Abstract
The genes which encode glycosomal glyceraldehyde-phosphate dehydrogenase (gGAPDH) of Trypanosoma cruzi are arranged as a tandemly repeated pair on a single chromosome and are identical at the level of nucleotide sequence. They are separated by an intergenic region which contains a 317 base pair sequence with the properties of a retroposon. The genes express a 1.5 kb mRNA and a 38 kd protein. The amino acid sequence contains features characteristic of glycosomal enzymes such as peptide insertions and a C-terminal extension. However, T. cruzi gGAPDH lacks one of the positively charged 'hotspot' motifs which have been proposed as topogenic signals for import into the glycosome, a unique microbody-like organelle. Molecular modelling of the T. cruzi and T. brucei enzymes suggests that neither structure would fulfil the requirements of the 'hotspot' glycosomal import model.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellofatto V., Cross G. A. Expression of a bacterial gene in a trypanosomatid protozoan. Science. 1989 Jun 9;244(4909):1167–1169. doi: 10.1126/science.2499047. [DOI] [PubMed] [Google Scholar]
- Blaxter M. L., Miles M. A., Kelly J. M. Specific serodiagnosis of visceral leishmaniasis using a Leishmania donovani antigen identified by expression cloning. Mol Biochem Parasitol. 1988 Sep;30(3):259–270. doi: 10.1016/0166-6851(88)90095-3. [DOI] [PubMed] [Google Scholar]
- Borst P. Discontinuous transcription and antigenic variation in trypanosomes. Annu Rev Biochem. 1986;55:701–732. doi: 10.1146/annurev.bi.55.070186.003413. [DOI] [PubMed] [Google Scholar]
- Borst P. How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). Biochim Biophys Acta. 1986 May 5;866(4):179–203. doi: 10.1016/0167-4781(86)90044-8. [DOI] [PubMed] [Google Scholar]
- Borst P. Peroxisome biogenesis revisited. Biochim Biophys Acta. 1989 Jun 1;1008(1):1–13. doi: 10.1016/0167-4781(89)90163-2. [DOI] [PubMed] [Google Scholar]
- Brener Z. Why vaccines do not work in Chagas disease. Parasitol Today. 1986 Jul;2(7):196–197. doi: 10.1016/0169-4758(86)90193-6. [DOI] [PubMed] [Google Scholar]
- Clayton C. E. Import of fructose bisphosphate aldolase into the glycosomes of Trypanosoma brucei. J Cell Biol. 1987 Dec;105(6 Pt 1):2649–2654. doi: 10.1083/jcb.105.6.2649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton C. E. The molecular biology of the Kinetoplastidae. Genet Eng. 1988;(7):1–56. [PubMed] [Google Scholar]
- Davidson B. E., Sajgò M., Noller H. F., Harris J. I. Amino-acid sequence of glyceraldehyde 3-phosphate dehydrogenase from lobster muscle. Nature. 1967 Dec 23;216(5121):1181–1185. doi: 10.1038/2161181a0. [DOI] [PubMed] [Google Scholar]
- Dragon E. A., Sias S. R., Kato E. A., Gabe J. D. The genome of Trypanosoma cruzi contains a constitutively expressed, tandemly arranged multicopy gene homologous to a major heat shock protein. Mol Cell Biol. 1987 Mar;7(3):1271–1275. doi: 10.1128/mcb.7.3.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
- Gibson W. C., Miles M. A. The karyotype and ploidy of Trypanosoma cruzi. EMBO J. 1986 Jun;5(6):1299–1305. doi: 10.1002/j.1460-2075.1986.tb04359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gould S. J., Keller G. A., Hosken N., Wilkinson J., Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989 May;108(5):1657–1664. doi: 10.1083/jcb.108.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hart D. T., Baudhuin P., Opperdoes F. R., de Duve C. Biogenesis of the glycosome in Trypanosoma brucei: the synthesis, translocation and turnover of glycosomal polypeptides. EMBO J. 1987 May;6(5):1403–1411. doi: 10.1002/j.1460-2075.1987.tb02381.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasan G., Turner M. J., Cordingley J. S. Complete nucleotide sequence of an unusual mobile element from trypanosoma brucei. Cell. 1984 May;37(1):333–341. doi: 10.1016/0092-8674(84)90329-5. [DOI] [PubMed] [Google Scholar]
- Kapler G. M., Coburn C. M., Beverley S. M. Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Mol Cell Biol. 1990 Mar;10(3):1084–1094. doi: 10.1128/mcb.10.3.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapler G. M., Zhang K., Beverley S. M. Sequence and S1 nuclease mapping of the 5' region of the dihydrofolate reductase-thymidylate synthase gene of Leishmania major. Nucleic Acids Res. 1987 Apr 24;15(8):3369–3383. doi: 10.1093/nar/15.8.3369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laban A., Tobin J. F., Curotto de Lafaille M. A., Wirth D. F. Stable expression of the bacterial neor gene in Leishmania enriettii. Nature. 1990 Feb 8;343(6258):572–574. doi: 10.1038/343572a0. [DOI] [PubMed] [Google Scholar]
- Laird P. W., Zomerdijk J. C., de Korte D., Borst P. In vivo labelling of intermediates in the discontinuous synthesis of mRNAs in Trypanosoma brucei. EMBO J. 1987 Apr;6(4):1055–1062. doi: 10.1002/j.1460-2075.1987.tb04858.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Layden R. E., Eisen H. Alternate trans splicing in Trypanosoma equiperdum: implications for splice site selection. Mol Cell Biol. 1988 Mar;8(3):1352–1360. doi: 10.1128/mcb.8.3.1352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Blancq S. M., Swinkels B. W., Gibson W. C., Borst P. Evidence for gene conversion between the phosphoglycerate kinase genes of Trypanosoma brucei. J Mol Biol. 1988 Apr 5;200(3):439–447. doi: 10.1016/0022-2836(88)90534-7. [DOI] [PubMed] [Google Scholar]
- Maingon R., Gerke R., Rodriguez M., Urbina J., Hoenicka J., Negri S., Aguirre T., Nehlin J., Knapp T., Crampton J. The tubulin genes of Trypanosoma cruzi. Eur J Biochem. 1988 Jan 15;171(1-2):285–291. doi: 10.1111/j.1432-1033.1988.tb13788.x. [DOI] [PubMed] [Google Scholar]
- Marchand M., Kooystra U., Wierenga R. K., Lambeir A. M., Van Beeumen J., Opperdoes F. R., Michels P. A. Glucosephosphate isomerase from Trypanosoma brucei. Cloning and characterization of the gene and analysis of the enzyme. Eur J Biochem. 1989 Sep 15;184(2):455–464. doi: 10.1111/j.1432-1033.1989.tb15038.x. [DOI] [PubMed] [Google Scholar]
- Marchand M., Poliszczak A., Gibson W. C., Wierenga R. K., Opperdoes F. R., Michels P. A. Characterization of the genes for fructose-bisphosphate aldolase in Trypanosoma brucei. Mol Biochem Parasitol. 1988 May;29(1):65–75. doi: 10.1016/0166-6851(88)90121-1. [DOI] [PubMed] [Google Scholar]
- Michels P. A. Evolutionary aspects of trypanosomes: analysis of genes. J Mol Evol. 1986;24(1-2):45–52. doi: 10.1007/BF02099950. [DOI] [PubMed] [Google Scholar]
- Michels P. A., Poliszczak A., Osinga K. A., Misset O., Van Beeumen J., Wierenga R. K., Borst P., Opperdoes F. R. Two tandemly linked identical genes code for the glycosomal glyceraldehyde-phosphate dehydrogenase in Trypanosoma brucei. EMBO J. 1986 May;5(5):1049–1056. doi: 10.1002/j.1460-2075.1986.tb04321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michels P. A. The glycosome of trypanosomes: properties and biogenesis of a microbody. Exp Parasitol. 1989 Oct;69(3):310–315. doi: 10.1016/0014-4894(89)90079-9. [DOI] [PubMed] [Google Scholar]
- Muhich M. L., Boothroyd J. C. Polycistronic transcripts in trypanosomes and their accumulation during heat shock: evidence for a precursor role in mRNA synthesis. Mol Cell Biol. 1988 Sep;8(9):3837–3846. doi: 10.1128/mcb.8.9.3837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opperdoes F. R. Compartmentation of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol. 1987;41:127–151. doi: 10.1146/annurev.mi.41.100187.001015. [DOI] [PubMed] [Google Scholar]
- Opperdoes F. R. Glycosomes may provide clues to the import of peroxisomal proteins. Trends Biochem Sci. 1988 Jul;13(7):255–260. doi: 10.1016/0968-0004(88)90158-2. [DOI] [PubMed] [Google Scholar]
- Ralph D., Huang J., Van der Ploeg L. H. Physical identification of branched intron side-products of splicing in Trypanosoma brucei. EMBO J. 1988 Aug;7(8):2539–2545. doi: 10.1002/j.1460-2075.1988.tb03102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Requena J. M., López M. C., Jimenez-Ruiz A., de la Torre J. C., Alonso C. A head-to-tail tandem organization of hsp70 genes in Trypanosoma cruzi. Nucleic Acids Res. 1988 Feb 25;16(4):1393–1406. doi: 10.1093/nar/16.4.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholler J. K., Aline R. F., Jr, Stuart K. D. Variant specific transcripts from the co-transposed segments of variant surface glycoprotein genes in Trypanosoma brucei. Mol Biochem Parasitol. 1988 May;29(1):89–103. doi: 10.1016/0166-6851(88)90123-5. [DOI] [PubMed] [Google Scholar]
- Skarzyński T., Moody P. C., Wonacott A. J. Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 A resolution. J Mol Biol. 1987 Jan 5;193(1):171–187. doi: 10.1016/0022-2836(87)90635-8. [DOI] [PubMed] [Google Scholar]
- Sutcliffe M. J., Haneef I., Carney D., Blundell T. L. Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1987 Oct-Nov;1(5):377–384. doi: 10.1093/protein/1.5.377. [DOI] [PubMed] [Google Scholar]
- Sutcliffe M. J., Hayes F. R., Blundell T. L. Knowledge based modelling of homologous proteins, Part II: Rules for the conformations of substituted sidechains. Protein Eng. 1987 Oct-Nov;1(5):385–392. doi: 10.1093/protein/1.5.385. [DOI] [PubMed] [Google Scholar]
- Swindle J., Ajioka J., Eisen H., Sanwal B., Jacquemot C., Browder Z., Buck G. The genomic organization and transcription of the ubiquitin genes of Trypanosoma cruzi. EMBO J. 1988 Apr;7(4):1121–1127. doi: 10.1002/j.1460-2075.1988.tb02921.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swinkels B. W., Evers R., Borst P. The topogenic signal of the glycosomal (microbody) phosphoglycerate kinase of Crithidia fasciculata resides in a carboxy-terminal extension. EMBO J. 1988 Apr;7(4):1159–1165. doi: 10.1002/j.1460-2075.1988.tb02926.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thaler D. S., Stahl F. W. DNA double-chain breaks in recombination of phage lambda and of yeast. Annu Rev Genet. 1988;22:169–197. doi: 10.1146/annurev.ge.22.120188.001125. [DOI] [PubMed] [Google Scholar]
- Tschudi C., Young A. S., Ruben L., Patton C. L., Richards F. F. Calmodulin genes in trypanosomes are tandemly repeated and produce multiple mRNAs with a common 5' leader sequence. Proc Natl Acad Sci U S A. 1985 Jun;82(12):3998–4002. doi: 10.1073/pnas.82.12.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tso J. Y., Sun X. H., Kao T. H., Reece K. S., Wu R. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485–2502. doi: 10.1093/nar/13.7.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner A. M., Deininger P. L., Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. doi: 10.1146/annurev.bi.55.070186.003215. [DOI] [PubMed] [Google Scholar]
- Wierenga R. K., Swinkels B., Michels P. A., Osinga K., Misset O., Van Beeumen J., Gibson W. C., Postma J. P., Borst P., Opperdoes F. R. Common elements on the surface of glycolytic enzymes from Trypanosoma brucei may serve as topogenic signals for import into glycosomes. EMBO J. 1987 Jan;6(1):215–221. doi: 10.1002/j.1460-2075.1987.tb04741.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986 Jun;5(6):1335–1342. doi: 10.1002/j.1460-2075.1986.tb04364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]