Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1990 Oct;9(10):3405–3411. doi: 10.1002/j.1460-2075.1990.tb07542.x

A set of tRNAs that lack either the T psi C arm or the dihydrouridine arm: towards a minimal tRNA adaptor.

R Okimoto 1, D R Wolstenholme 1
PMCID: PMC552080  PMID: 2209550

Abstract

The mitochondrial DNA (mtDNA) molecules of the nematode worms, Caenorhabditis elegans and Ascaris suum contain 22 putative genes for non-standard forms of tRNAs. The inferred transcripts can be folded into 20 separate structures each resembling a tRNA whose T psi C arm and variable loop are replaced with a simple loop of 6-12 nucleotides. In two further structures [that resemble tRNAs for ser(UCN) and ser(AGN)], the dihydrouridine arm is replaced by a loop of 5-8 nucleotides. By hybridizing mt-tRNA gene-specific oligonucleotide probes to nematode RNAs, we have obtained evidence for transcription of at least nine C.elegans and three A.suum mt-tRNA genes. Each transcript (tRNA) is the exact size predicted from the respective DNA sequence, to which three nucleotides, presumably CCA, have been added following transcription. An exception was C.elegans mt-tRNAasn, most molecules of which had one nucleotide (plus CCA) more than predicted from the gene. The data presented strongly support the conclusion that the functional mt-tRNAs of nematode worms are direct transcripts (with only CCA addition) of the structurally unusual mt-tRNA genes. There is no evidence of trans-splicing or RNA editing to add the sequences missing from these nonstandard tRNAs. We presume, therefore, that the non-standard forms are active in mitochondrial protein synthesis.

Full text

PDF
3405

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  2. Anderson S., de Bruijn M. H., Coulson A. R., Eperon I. C., Sanger F., Young I. G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol. 1982 Apr 25;156(4):683–717. doi: 10.1016/0022-2836(82)90137-1. [DOI] [PubMed] [Google Scholar]
  3. Bibb M. J., Van Etten R. A., Wright C. T., Walberg M. W., Clayton D. A. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981 Oct;26(2 Pt 2):167–180. doi: 10.1016/0092-8674(81)90300-7. [DOI] [PubMed] [Google Scholar]
  4. Bolten S. L., Powell-Abel P., Fischhoff D. A., Waterston R. H. The sup-7(st5) X gene of Caenorhabditis elegans encodes a tRNATrpUAG amber suppressor. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6784–6788. doi: 10.1073/pnas.81.21.6784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaconas G., van de Sande J. H. 5'-32P labeling of RNA and DNA restriction fragments. Methods Enzymol. 1980;65(1):75–85. doi: 10.1016/s0076-6879(80)65012-5. [DOI] [PubMed] [Google Scholar]
  6. Clary D. O., Wolstenholme D. R. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22(3):252–271. doi: 10.1007/BF02099755. [DOI] [PubMed] [Google Scholar]
  7. Dahlberg A. E. The functional role of ribosomal RNA in protein synthesis. Cell. 1989 May 19;57(4):525–529. doi: 10.1016/0092-8674(89)90122-0. [DOI] [PubMed] [Google Scholar]
  8. Garey J. R., Wolstenholme D. R. Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA(serAGN) that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol. 1989 May;28(5):374–387. doi: 10.1007/BF02603072. [DOI] [PubMed] [Google Scholar]
  9. Gray M. W., Sankoff D., Cedergren R. J. On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res. 1984 Jul 25;12(14):5837–5852. doi: 10.1093/nar/12.14.5837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacobs H. T., Elliott D. J., Math V. B., Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol. 1988 Jul 20;202(2):185–217. doi: 10.1016/0022-2836(88)90452-4. [DOI] [PubMed] [Google Scholar]
  11. Moazed D., Noller H. F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell. 1989 May 19;57(4):585–597. doi: 10.1016/0092-8674(89)90128-1. [DOI] [PubMed] [Google Scholar]
  12. Moazed D., Noller H. F. Intermediate states in the movement of transfer RNA in the ribosome. Nature. 1989 Nov 9;342(6246):142–148. doi: 10.1038/342142a0. [DOI] [PubMed] [Google Scholar]
  13. Moore P. B. Protein synthesis. Elongation remodelled. Nature. 1989 Nov 9;342(6246):127–128. doi: 10.1038/342127a0. [DOI] [PubMed] [Google Scholar]
  14. Noller H. F., Stern S., Moazed D., Powers T., Svensson P., Changchien L. M. Studies on the architecture and function of 16S rRNA. Cold Spring Harb Symp Quant Biol. 1987;52:695–708. doi: 10.1101/sqb.1987.052.01.079. [DOI] [PubMed] [Google Scholar]
  15. Roe B. A., Ma D. P., Wilson R. K., Wong J. F. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985 Aug 15;260(17):9759–9774. [PubMed] [Google Scholar]
  16. Roe B. A. Studies on human tRNA. I. The rapid, large scale isolation and partial fractionation of placenta and liver tRNA. Nucleic Acids Res. 1975 Jan;2(1):21–42. doi: 10.1093/nar/2.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roe B., Sirover M., Dudock B. Kinetics of homologous and heterologous aminoacylation with yeast phenylalanyl transfer ribonucleic acid synthetase. Biochemistry. 1973 Oct 9;12(21):4146–4154. doi: 10.1021/bi00745a018. [DOI] [PubMed] [Google Scholar]
  18. Singhal R. P., Fallis P. A. Structure, function, and evolution of transfer RNAs (with appendix giving complete sequences of 178 tRNAs). Prog Nucleic Acid Res Mol Biol. 1979;23:227–290. doi: 10.1016/s0079-6603(08)60135-x. [DOI] [PubMed] [Google Scholar]
  19. Tranquilla T. A., Cortese R., Melton D., Smith J. D. Sequences of four tRNA genes from Caenorhabditis elegans and the expression of C. elegans tRNALeu (anticodon IAG) in Xenopus oocytes. Nucleic Acids Res. 1982 Dec 20;10(24):7919–7934. doi: 10.1093/nar/10.24.7919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wolstenholme D. R., Macfarlane J. L., Okimoto R., Clary D. O., Wahleithner J. A. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1324–1328. doi: 10.1073/pnas.84.5.1324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Bruijn M. H., Klug A. A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire 'dihydrouridine' loop and stem. EMBO J. 1983;2(8):1309–1321. doi: 10.1002/j.1460-2075.1983.tb01586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES