Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(24):9558–9562. doi: 10.1073/pnas.87.24.9558

Evolution of Drosophila mitochondrial DNA and the history of the melanogaster subgroup.

Y Satta 1, N Takahata 1
PMCID: PMC55211  PMID: 2124697

Abstract

The nucleotide sequences of a common region of 15 mitochondrial DNAs (mtDNAs) sampled from the Drosophila melanogaster subgroup were determined. The region is 2527 base pairs long, including most of the NADH dehydrogenase subunit 2 and cytochrome oxidase subunit 1 genes punctuated by three tRNA genes. The comparative study revealed (i) the extremely low saturation level of transitional differences, (ii) recombination or variable substitution rates even within species, (iii) long persistence times of distinct types of mtDNA in Drosophila simulans and Drosophila mauritiana, and (iv) an apparent lack of within-type variations in island species. Also found was a high correlation among the transitional rate, the saturation level, and the G + C content (or codon usage). It appears that D. simulans and D. mauritiana have maintained highly structured populations for more than 1 million years. Such structures are consistent with the origination of Drosophila sechellia from D. simulans. Yet geographic isolation is so weak as to show no evidence for further speciation. Moreover, one type of mtDNA shared by D. simulans and D. mauritiana suggests either recent divergence or ongoing introgression.

Full text

PDF
9558

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquadro C. F., Lado K. M., Noon W. A. The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence. Genetics. 1988 Aug;119(4):875–888. doi: 10.1093/genetics/119.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baba-Aïssa F., Solignac M., Dennebouy N., David J. R. Mitochondrial DNA variability in Drosophila simulans: quasi absence of polymorphism within each of the three cytoplasmic races. Heredity (Edinb) 1988 Dec;61(Pt 3):419–426. doi: 10.1038/hdy.1988.133. [DOI] [PubMed] [Google Scholar]
  3. Choudhary M., Singh R. S. A Comprehensive Study of Genic Variation in Natural Populations of Drosophila melanogaster. III. Variations in Genetic Structure and Their Causes between Drosophila melanogaster and Its Sibling Species Drosophila simulans. Genetics. 1987 Dec;117(4):697–710. doi: 10.1093/genetics/117.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clary D. O., Wolstenholme D. R. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22(3):252–271. doi: 10.1007/BF02099755. [DOI] [PubMed] [Google Scholar]
  5. Crozier R. H., Crozier Y. C., Mackinlay A. G. The CO-I and CO-II region of honeybee mitochondrial DNA: evidence for variation in insect mitochondrial evolutionary rates. Mol Biol Evol. 1989 Jul;6(4):399–411. doi: 10.1093/oxfordjournals.molbev.a040553. [DOI] [PubMed] [Google Scholar]
  6. DeSalle R., Freedman T., Prager E. M., Wilson A. C. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J Mol Evol. 1987;26(1-2):157–164. doi: 10.1007/BF02111289. [DOI] [PubMed] [Google Scholar]
  7. Figueroa F., Günther E., Klein J. MHC polymorphism pre-dating speciation. Nature. 1988 Sep 15;335(6187):265–267. doi: 10.1038/335265a0. [DOI] [PubMed] [Google Scholar]
  8. Garesse R. Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics. 1988 Apr;118(4):649–663. doi: 10.1093/genetics/118.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. doi: 10.1038/217624a0. [DOI] [PubMed] [Google Scholar]
  10. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  11. Lansman R. A., Avise J. C., Huettel M. D. Critical experimental test of the possibility of "paternal leakage" of mitochondrial DNA. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1969–1971. doi: 10.1073/pnas.80.7.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lawlor D. A., Ward F. E., Ennis P. D., Jackson A. P., Parham P. HLA-A and B polymorphisms predate the divergence of humans and chimpanzees. Nature. 1988 Sep 15;335(6187):268–271. doi: 10.1038/335268a0. [DOI] [PubMed] [Google Scholar]
  13. Mayer W. E., Jonker M., Klein D., Ivanyi P., van Seventer G., Klein J. Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO J. 1988 Sep;7(9):2765–2774. doi: 10.1002/j.1460-2075.1988.tb03131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  15. Satta Y., Ishiwa H., Chigusa S. I. Analysis of nucleotide substitutions of mitochondrial DNAs in Drosophila melanogaster and its sibling species. Mol Biol Evol. 1987 Nov;4(6):638–650. doi: 10.1093/oxfordjournals.molbev.a040464. [DOI] [PubMed] [Google Scholar]
  16. Selander R. K., Levin B. R. Genetic diversity and structure in Escherichia coli populations. Science. 1980 Oct 31;210(4469):545–547. doi: 10.1126/science.6999623. [DOI] [PubMed] [Google Scholar]
  17. Sharp P. M., Li W. H. On the rate of DNA sequence evolution in Drosophila. J Mol Evol. 1989 May;28(5):398–402. doi: 10.1007/BF02603075. [DOI] [PubMed] [Google Scholar]
  18. Solignac M., Monnerot M., Mounolou J. C. Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J Mol Evol. 1986;23(1):31–40. doi: 10.1007/BF02100996. [DOI] [PubMed] [Google Scholar]
  19. Stephens J. C., Nei M. Phylogenetic analysis of polymorphic DNA sequences at the Adh locus in Drosophila melanogaster and its sibling species. J Mol Evol. 1985;22(4):289–300. doi: 10.1007/BF02115684. [DOI] [PubMed] [Google Scholar]
  20. Takahata N., Kimura M. A model of evolutionary base substitutions and its application with special reference to rapid change of pseudogenes. Genetics. 1981 Jul;98(3):641–657. doi: 10.1093/genetics/98.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takahata N. The coalescent in two partially isolated diffusion populations. Genet Res. 1988 Dec;52(3):213–222. doi: 10.1017/s0016672300027683. [DOI] [PubMed] [Google Scholar]
  22. de Bruijn M. H. Drosophila melanogaster mitochondrial DNA, a novel organization and genetic code. Nature. 1983 Jul 21;304(5923):234–241. doi: 10.1038/304234a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES