Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1990 Aug;9(8):2367–2373. doi: 10.1002/j.1460-2075.1990.tb07411.x

Recombinant human protein C derivatives: altered response to calcium resulting in enhanced activation by thrombin.

H J Ehrlich 1, B W Grinnell 1, S R Jaskunas 1, C T Esmon 1, S B Yan 1, N U Bang 1
PMCID: PMC552260  PMID: 2369894

Abstract

Calcium plays a dual role in the activation of protein C: it inhibits protein C activation by alpha-thrombin, whereas it is required for protein C activation by the thrombomodulin-thrombin complex. Available information suggests that these calcium effects are mediated through calcium induced structural changes in protein C. In this paper, we demonstrate that substitution of Asp167 (located in the activation peptide of human protein C, occupying position P3 relative to the peptide bond Arg169-Leu170 which is susceptible to hydrolysis by thrombin) by either Gly or Phe results in protein C derivatives which are characterized by an altered response to calcium. At 3 mM calcium, alpha-thrombin activated the derivatives 5- to 8-fold faster compared with the wild-type, an effect which was shown to be caused by a decreased inhibitory effect of calcium on the reaction. These same single amino acid substitutions enhanced the affinity of the thrombomodulin-thrombin complex for the substrate at 3 mM calcium 3-(Gly-substitution) to 6-(Phe-substitution) fold, either without influencing kcat (Gly-substitution) or with a 2.5-fold decrease of kcat. For both derivatives, the calcium concentrations resulting in half maximal inhibition of activation by alpha-thrombin and in half maximal stimulation of activation by the thrombomodulin-thrombin complex increased from 0.3 mM to 0.6 mM. It is concluded that Asp167 is involved in the calcium induced inhibition of protein C activation by thrombin. Moreover, our studies demonstrate that it is feasible to enhance the efficiency of enzymatic reactions by introducing point mutations in the substrate.

Full text

PDF
2367

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckmann R. J., Schmidt R. J., Santerre R. F., Plutzky J., Crabtree G. R., Long G. L. The structure and evolution of a 461 amino acid human protein C precursor and its messenger RNA, based upon the DNA sequence of cloned human liver cDNAs. Nucleic Acids Res. 1985 Jul 25;13(14):5233–5247. doi: 10.1093/nar/13.14.5233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berg D. T., Mooney P. Q., Baez M., Grinnell B. W. Tandem promoter/enhancer units create a versatile regulatory element for the expression of genes in mammalian cells. Nucleic Acids Res. 1988 Feb 25;16(4):1635–1635. doi: 10.1093/nar/16.4.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang J. Y. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur J Biochem. 1985 Sep 2;151(2):217–224. doi: 10.1111/j.1432-1033.1985.tb09091.x. [DOI] [PubMed] [Google Scholar]
  4. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  5. Craik C. S., Largman C., Fletcher T., Roczniak S., Barr P. J., Fletterick R., Rutter W. J. Redesigning trypsin: alteration of substrate specificity. Science. 1985 Apr 19;228(4697):291–297. doi: 10.1126/science.3838593. [DOI] [PubMed] [Google Scholar]
  6. Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J. H., Masiarz F., Kan Y. W., Goldfine I. D. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985 Apr;40(4):747–758. doi: 10.1016/0092-8674(85)90334-4. [DOI] [PubMed] [Google Scholar]
  7. Ehrlich H. J., Jaskunas S. R., Grinnell B. W., Yan S. B., Bang N. U. Direct expression of recombinant activated human protein C, a serine protease. J Biol Chem. 1989 Aug 25;264(24):14298–14304. [PubMed] [Google Scholar]
  8. Esmon C. T., Owen W. G. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2249–2252. doi: 10.1073/pnas.78.4.2249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Esmon C. T. The regulation of natural anticoagulant pathways. Science. 1987 Mar 13;235(4794):1348–1352. doi: 10.1126/science.3029867. [DOI] [PubMed] [Google Scholar]
  10. Esmon C. T. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989 Mar 25;264(9):4743–4746. [PubMed] [Google Scholar]
  11. Esmon N. L., DeBault L. E., Esmon C. T. Proteolytic formation and properties of gamma-carboxyglutamic acid-domainless protein C. J Biol Chem. 1983 May 10;258(9):5548–5553. [PubMed] [Google Scholar]
  12. Foster D., Davie E. W. Characterization of a cDNA coding for human protein C. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4766–4770. doi: 10.1073/pnas.81.15.4766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988 May 20;53(4):505–518. doi: 10.1016/0092-8674(88)90567-3. [DOI] [PubMed] [Google Scholar]
  14. Galvin J. B., Kurosawa S., Moore K., Esmon C. T., Esmon N. L. Reconstitution of rabbit thrombomodulin into phospholipid vesicles. J Biol Chem. 1987 Feb 15;262(5):2199–2205. [PubMed] [Google Scholar]
  15. Graf L., Craik C. S., Patthy A., Roczniak S., Fletterick R. J., Rutter W. J. Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin. Biochemistry. 1987 May 5;26(9):2616–2623. doi: 10.1021/bi00383a031. [DOI] [PubMed] [Google Scholar]
  16. Handford P. A., Baron M., Mayhew M., Willis A., Beesley T., Brownlee G. G., Campbell I. D. The first EGF-like domain from human factor IX contains a high-affinity calcium binding site. EMBO J. 1990 Feb;9(2):475–480. doi: 10.1002/j.1460-2075.1990.tb08133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iwanaga S., Wallén P., Gröndahl N. J., Henschan A., Blombäck B. Isolation and characterization of N-terminal fragments obtained by plasmin digestion of human fibrinogen. Biochim Biophys Acta. 1967 Dec 12;147(3):606–609. doi: 10.1016/0005-2795(67)90025-6. [DOI] [PubMed] [Google Scholar]
  18. Johnson A. E., Esmon N. L., Laue T. M., Esmon C. T. Structural changes required for activation of protein C are induced by Ca2+ binding to a high affinity site that does not contain gamma-carboxyglutamic acid. J Biol Chem. 1983 May 10;258(9):5554–5560. [PubMed] [Google Scholar]
  19. Kahn M., Kolter R., Thomas C., Figurski D., Meyer R., Remaut E., Helinski D. R. Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. Methods Enzymol. 1979;68:268–280. doi: 10.1016/0076-6879(79)68019-9. [DOI] [PubMed] [Google Scholar]
  20. Knowles J. R. Tinkering with enzymes: what are we learning? Science. 1987 Jun 5;236(4806):1252–1258. doi: 10.1126/science.3296192. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Marsh H. C., Jr, Meinwald Y. C., Lee S., Scheraga H. A. Mechanism of action of thrombin on fibrinogen. Direct evidence for the involvement of phenylalanine at position P9. Biochemistry. 1982 Nov 23;21(24):6167–6171. doi: 10.1021/bi00267a022. [DOI] [PubMed] [Google Scholar]
  23. Morita T., Isaacs B. S., Esmon C. T., Johnson A. E. Derivatives of blood coagulation factor IX contain a high affinity Ca2+-binding site that lacks gamma-carboxyglutamic acid. J Biol Chem. 1984 May 10;259(9):5698–5704. [PubMed] [Google Scholar]
  24. Morita T., Kisiel W. Calcium binding to a human factor IXa derivative lacking gamma-carboxyglutamic acid: evidence for two high-affinity sites that do not involve beta-hydroxyaspartic acid. Biochem Biophys Res Commun. 1985 Jul 31;130(2):841–847. doi: 10.1016/0006-291x(85)90493-0. [DOI] [PubMed] [Google Scholar]
  25. Ohlin A. K., Landes G., Bourdon P., Oppenheimer C., Wydro R., Stenflo J. Beta-hydroxyaspartic acid in the first epidermal growth factor-like domain of protein C. Its role in Ca2+ binding and biological activity. J Biol Chem. 1988 Dec 15;263(35):19240–19248. [PubMed] [Google Scholar]
  26. Ohlin A. K., Linse S., Stenflo J. Calcium binding to the epidermal growth factor homology region of bovine protein C. J Biol Chem. 1988 May 25;263(15):7411–7417. [PubMed] [Google Scholar]
  27. Ohlin A. K., Stenflo J. Calcium-dependent interaction between the epidermal growth factor precursor-like region of human protein C and a monoclonal antibody. J Biol Chem. 1987 Oct 5;262(28):13798–13804. [PubMed] [Google Scholar]
  28. Owen W. G., Esmon C. T., Jackson C. M. The conversion of prothrombin to thrombin. I. Characterization of the reaction products formed during the activation of bovine prothrombin. J Biol Chem. 1974 Jan 25;249(2):594–605. [PubMed] [Google Scholar]
  29. Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell. 1985 Jul;41(3):657–663. doi: 10.1016/s0092-8674(85)80046-5. [DOI] [PubMed] [Google Scholar]
  30. Persson E., Selander M., Linse S., Drakenberg T., Ohlin A. K., Stenflo J. Calcium binding to the isolated beta-hydroxyaspartic acid-containing epidermal growth factor-like domain of bovine factor X. J Biol Chem. 1989 Oct 5;264(28):16897–16904. [PubMed] [Google Scholar]
  31. Rees D. J., Jones I. M., Handford P. A., Walter S. J., Esnouf M. P., Smith K. J., Brownlee G. G. The role of beta-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX. EMBO J. 1988 Jul;7(7):2053–2061. doi: 10.1002/j.1460-2075.1988.tb03045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stearns D. J., Kurosawa S., Sims P. J., Esmon N. L., Esmon C. T. The interaction of a Ca2+-dependent monoclonal antibody with the protein C activation peptide region. Evidence for obligatory Ca2+ binding to both antigen and antibody. J Biol Chem. 1988 Jan 15;263(2):826–832. [PubMed] [Google Scholar]
  34. Sugo T., Björk I., Holmgren A., Stenflo J. Calcium-binding properties of bovine factor X lacking the gamma-carboxyglutamic acid-containing region. J Biol Chem. 1984 May 10;259(9):5705–5710. [PubMed] [Google Scholar]
  35. Vigano D'Angelo S., Comp P. C., Esmon C. T., D'Angelo A. Relationship between protein C antigen and anticoagulant activity during oral anticoagulation and in selected disease states. J Clin Invest. 1986 Feb;77(2):416–425. doi: 10.1172/JCI112319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA. 1984 Dec;3(6):479–488. doi: 10.1089/dna.1.1984.3.479. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES