Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1990 Aug;9(8):2465–2470. doi: 10.1002/j.1460-2075.1990.tb07424.x

Svp25, a synaptic vesicle membrane glycoprotein from Torpedo electric organ that binds calcium and forms a homo-oligomeric complex.

W Volknandt 1, M Schläfer 1, F Bonzelius 1, H Zimmermann 1
PMCID: PMC552274  PMID: 2196174

Abstract

Svp25 is a major glycoprotein of cholinergic synaptic vesicles isolated from the Torpedo electric organ. On SDS-PAGE svp25 migrates as a protein of Mr 25,000 and on two dimensional gel electrophoresis separates into several isoforms around a pI of 6.0. It binds concanavalin A and on phase separation with Triton X-114 behaves as an integral membrane protein. Svp25 represents a major vesicular 45Ca2(+)-binding protein. Under non-reducing conditions svp25 forms complexes of higher molecular weight which are multiples of 25,000. Svp25 is contained in the dense web of nerve terminal ramifications at the ventral side of the electroplaque cells. Colloidal gold labelling using a monospecific antibody confirms the selective association of the protein with synaptic vesicles. Although the function of the vesicular svp25 glycoprotein is not known, its ability to bind Ca2+ suggests that it is regulated by activation of the nerve terminal.

Full text

PDF
2465

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. C., Bahr B. A., Parsons S. M. Stoichiometries of acetylcholine uptake, release, and drug inhibition in Torpedo synaptic vesicles: heterogeneity in acetylcholine transport and storage. J Neurochem. 1986 Apr;46(4):1207–1213. doi: 10.1111/j.1471-4159.1986.tb00639.x. [DOI] [PubMed] [Google Scholar]
  2. Anderson D. C., King S. C., Parsons S. M. Proton gradient linkage to active uptake of [3H]acetylcholine by Torpedo electric organ synaptic vesicles. Biochemistry. 1982 Jun 22;21(13):3037–3043. doi: 10.1021/bi00256a001. [DOI] [PubMed] [Google Scholar]
  3. Baumert M., Maycox P. R., Navone F., De Camilli P., Jahn R. Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J. 1989 Feb;8(2):379–384. doi: 10.1002/j.1460-2075.1989.tb03388.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bock E., Divac I., Norrild B., Thorn N. A., Torp-Pedersen C., Treiman M. Synaptic membrane proteins in mammalian brain. Scand J Immunol Suppl. 1982;9:223–240. doi: 10.1111/j.1365-3083.1982.tb03766.x. [DOI] [PubMed] [Google Scholar]
  5. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  6. Breckenridge L. J., Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. 1987 Aug 27-Sep 2Nature. 328(6133):814–817. doi: 10.1038/328814a0. [DOI] [PubMed] [Google Scholar]
  7. Breer H., Morris S. J., Whittaker V. P. Adenosine triphosphatase activity associated with purified cholinergic synaptic vesicles of Torpedo marmorata. Eur J Biochem. 1977 Oct 17;80(1):313–318. doi: 10.1111/j.1432-1033.1977.tb11884.x. [DOI] [PubMed] [Google Scholar]
  8. Buckley K., Kelly R. B. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol. 1985 Apr;100(4):1284–1294. doi: 10.1083/jcb.100.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burke B. E., DeLorenzo R. J. Ca2+ and calmodulin-dependent phosphorylation of endogenous synaptic vesicle tubulin by a vesicle-bound calmodulin kinase system. J Neurochem. 1982 May;38(5):1205–1218. doi: 10.1111/j.1471-4159.1982.tb07892.x. [DOI] [PubMed] [Google Scholar]
  10. Carlson S. S., Kelly R. B. A highly antigenic proteoglycan-like component of cholinergic synaptic vesicles. J Biol Chem. 1983 Sep 25;258(18):11082–11091. [PubMed] [Google Scholar]
  11. Cidon S., Sihra T. S. Characterization of a H+-ATPase in rat brain synaptic vesicles. Coupling to L-glutamate transport. J Biol Chem. 1989 May 15;264(14):8281–8288. [PubMed] [Google Scholar]
  12. Diebler M. F., Gaudry-Talarmain Y. M. AH5183 and cetiedil: two potent inhibitors of acetylcholine uptake into isolated synaptic vesicles from Torpedo marmorata. J Neurochem. 1989 Mar;52(3):813–821. doi: 10.1111/j.1471-4159.1989.tb02526.x. [DOI] [PubMed] [Google Scholar]
  13. Diebler M. F., Morot-Gaudry Y. Acetylcholine incorporation by cholinergic synaptic vesicles from Torpedo marmorata. J Neurochem. 1981 Aug;37(2):467–475. doi: 10.1111/j.1471-4159.1981.tb00479.x. [DOI] [PubMed] [Google Scholar]
  14. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  15. Gaardsvoll H., Obendorf D., Winkler H., Bock E. Demonstration of immunochemical identity between the synaptic vesicle proteins synaptin and synaptophysin/p38. FEBS Lett. 1988 Dec 19;242(1):117–120. doi: 10.1016/0014-5793(88)80997-9. [DOI] [PubMed] [Google Scholar]
  16. Harlos P., Lee D. A., Stadler H. Characterization of a Mg2+-ATPase and a proton pump in cholinergic synaptic vesicles from the electric organ of Torpedo marmorata. Eur J Biochem. 1984 Nov 2;144(3):441–446. doi: 10.1111/j.1432-1033.1984.tb08485.x. [DOI] [PubMed] [Google Scholar]
  17. Israël M., Manaranche R., Marsal J., Meunier F. M., Morel N., Frachon P., Lesbats B. ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ. J Membr Biol. 1980 May 23;54(2):115–126. doi: 10.1007/BF01940565. [DOI] [PubMed] [Google Scholar]
  18. Janetzko A., Zimmermann H., Volknandt W. Intraneuronal distribution of a synaptic vesicle membrane protein: antibody binding sites at axonal membrane compartments and trans-Golgi network and accumulation at nodes of Ranvier. Neuroscience. 1989;32(1):65–77. doi: 10.1016/0306-4522(89)90108-5. [DOI] [PubMed] [Google Scholar]
  19. Koepsell H., Korn K., Ferguson D., Menuhr H., Ollig D., Haase W. Reconstitution and partial purification of several Na+ cotransport systems from renal brush-border membranes. Properties of the L-glutamate transporter in proteoliposomes. J Biol Chem. 1984 May 25;259(10):6548–6558. [PubMed] [Google Scholar]
  20. Linial M., Miller K., Scheller R. H. VAT-1: an abundant membrane protein from Torpedo cholinergic synaptic vesicles. Neuron. 1989 Mar;2(3):1265–1273. doi: 10.1016/0896-6273(89)90311-5. [DOI] [PubMed] [Google Scholar]
  21. Luqmani Y. A. Nucleotide uptake by isolated cholinergic synaptic vesicles: evidence for a carrier of adenosine 5'-triphosphate. Neuroscience. 1981;6(6):1011–1021. doi: 10.1016/0306-4522(81)90067-1. [DOI] [PubMed] [Google Scholar]
  22. Maroteaux L., Campanelli J. T., Scheller R. H. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988 Aug;8(8):2804–2815. doi: 10.1523/JNEUROSCI.08-08-02804.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maruyama K., Mikawa T., Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem. 1984 Feb;95(2):511–519. doi: 10.1093/oxfordjournals.jbchem.a134633. [DOI] [PubMed] [Google Scholar]
  24. Michaelson D. M., Ophir I., Angel I. ATP-stimulated Ca2+ transport into cholinergic Torpedo synaptic vesicles. J Neurochem. 1980 Jul;35(1):116–124. doi: 10.1111/j.1471-4159.1980.tb12496.x. [DOI] [PubMed] [Google Scholar]
  25. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  26. Parsons S. M., Koenigsberger R. Specific stimulated uptake of acetylcholine by Torpedo electric organ synaptic vesicles. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6234–6238. doi: 10.1073/pnas.77.10.6234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  28. Rahamimoff R., DeRiemer S. A., Sakmann B., Stadler H., Yakir N. Ion channels in synaptic vesicles from Torpedo electric organ. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5310–5314. doi: 10.1073/pnas.85.14.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rehm H., Wiedenmann B., Betz H. Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J. 1986 Mar;5(3):535–541. doi: 10.1002/j.1460-2075.1986.tb04243.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rephaeli A., Parsons S. M. Calmodulin stimulation of 45Ca2+ transport and protein phosphorylation in cholinergic synaptic vesicles. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5783–5787. doi: 10.1073/pnas.79.19.5783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  32. Schmidt R., Zimmermann H., Whittaker V. P. Metal ion content of cholinergic synaptic vesicles isolated from the electric organ of Torpedo: effect of stimulation-induced transmitter release. Neuroscience. 1980;5(3):625–638. doi: 10.1016/0306-4522(80)90060-3. [DOI] [PubMed] [Google Scholar]
  33. Stadler H., Dowe G. H. Identification of a heparan sulphate-containing proteoglycan as a specific core component of cholinergic synaptic vesicles from Torpedo marmorata. EMBO J. 1982;1(11):1381–1384. doi: 10.1002/j.1460-2075.1982.tb01326.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stadler H., Tashiro T. Isolation of synaptosomal plasma membranes from cholinergic nerve terminals and a comparison of their proteins with those of synaptic vesicles. Eur J Biochem. 1979 Nov 1;101(1):171–178. doi: 10.1111/j.1432-1033.1979.tb04229.x. [DOI] [PubMed] [Google Scholar]
  35. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  36. Südhof T. C., Baumert M., Perin M. S., Jahn R. A synaptic vesicle membrane protein is conserved from mammals to Drosophila. Neuron. 1989 May;2(5):1475–1481. doi: 10.1016/0896-6273(89)90193-1. [DOI] [PubMed] [Google Scholar]
  37. Thomas L., Hartung K., Langosch D., Rehm H., Bamberg E., Franke W. W., Betz H. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science. 1988 Nov 18;242(4881):1050–1053. doi: 10.1126/science.2461586. [DOI] [PubMed] [Google Scholar]
  38. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Trimble W. S., Cowan D. M., Scheller R. H. VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4538–4542. doi: 10.1073/pnas.85.12.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Volknandt W., Naito S., Ueda T., Zimmermann H. Synapsin I is associated with cholinergic nerve terminals in the electric organs of Torpedo, Electrophorus, and Malapterurus and copurifies with Torpedo synaptic vesicles. J Neurochem. 1987 Aug;49(2):342–347. doi: 10.1111/j.1471-4159.1987.tb02871.x. [DOI] [PubMed] [Google Scholar]
  41. Volknandt W., Zimmermann H. Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm. J Neurochem. 1986 Nov;47(5):1449–1462. doi: 10.1111/j.1471-4159.1986.tb00778.x. [DOI] [PubMed] [Google Scholar]
  42. Wiedenmann B., Franke W. W. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell. 1985 Jul;41(3):1017–1028. doi: 10.1016/s0092-8674(85)80082-9. [DOI] [PubMed] [Google Scholar]
  43. Wiedenmann B., Lawley K., Grund C., Branton D. Solubilization of proteins from bovine brain coated vesicles by protein perturbants and Triton X-100. J Cell Biol. 1985 Jul;101(1):12–18. doi: 10.1083/jcb.101.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yamagata S. K., Parsons S. M. Cholinergic synaptic vesicles contain a V-type and a P-type ATPase. J Neurochem. 1989 Nov;53(5):1354–1362. doi: 10.1111/j.1471-4159.1989.tb08525.x. [DOI] [PubMed] [Google Scholar]
  45. Zisapel N. Cross-linking of synaptic vesicle proteins. Effect of ATP. Biochim Biophys Acta. 1982 Oct 5;707(2):243–251. doi: 10.1016/0167-4838(82)90357-0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES