Abstract
Notwithstanding the high degree of amino acid sequence homologies between human factor XIIIa on the one hand and intracellular transglutaminases (protein-glutamine:amine gamma-glutamyltransferase, EC 2.3.2.13) from guinea pig liver or human erythrocytes on the other, we find that the two sets of enzymes differ remarkably in the mode of cross-linking the same protein substrate--i.e., human fibrinogen. In the program of polymerization with factor XIIIa, production of the known gamma-gamma' homologous chain pairs is the dominant feature, whereas with either intracellular transglutaminase, a series of hitherto unidentified A alpha.gamma hybrid chain combinations, designated A alpha p gamma q (p and q = 1, 2, 3...), is generated and practically no gamma-gamma' dimers are formed. Two-dimensional electrophoresis is particularly useful for demonstrating the production of A alpha p gamma q structures by protein staining as well as by immunoblotting against specific antibodies to the A alpha and gamma chains of fibrinogen. These findings should aid in deciding whether the direct cross-linking of fibrinogen by transglutaminase might contribute to thrombotic processes in addition to the thrombin- and factor XIIIa-dependent pathway of clot formation.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowness J. M., Tarr A. H., Wiebe R. I. Transglutaminase-catalysed cross-linking: a potential mechanism for the interaction of fibrinogen, low density lipoprotein and arterial type III procollagen. Thromb Res. 1989 May 15;54(4):357–367. doi: 10.1016/0049-3848(89)90094-7. [DOI] [PubMed] [Google Scholar]
- Brenner S. C., Wold F. Human erythrocyte transglutaminase. Purification and properties. Biochim Biophys Acta. 1978 Jan 12;522(1):74–83. doi: 10.1016/0005-2744(78)90323-6. [DOI] [PubMed] [Google Scholar]
- Croall D. E., DeMartino G. N. Calcium-dependent affinity purification of transglutaminase from rat liver cytosol. Cell Calcium. 1986 Feb;7(1):29–39. doi: 10.1016/0143-4160(86)90028-x. [DOI] [PubMed] [Google Scholar]
- Folk J. E., Cole P. W. Mechanism of action of guinea pig liver transglutaminase. I. Purification and properties of the enzyme: identification of a functional cysteine essential for activity. J Biol Chem. 1966 Dec 10;241(23):5518–5525. [PubMed] [Google Scholar]
- Ichinose A., Bottenus R. E., Davie E. W. Structure of transglutaminases. J Biol Chem. 1990 Aug 15;265(23):13411–13414. [PubMed] [Google Scholar]
- LORAND L., DOOLITTLE R. F., KONISHI K., RIGGS S. K. A NEW CLASS OF BLOOD COAGULATION INHIBITORS. Arch Biochem Biophys. 1963 Aug;102:171–179. doi: 10.1016/0003-9861(63)90168-1. [DOI] [PubMed] [Google Scholar]
- Lorand J. B., Urayama T., Lorand L. Transglutaminase as a blood clotting enzyme. Biochem Biophys Res Commun. 1966 Jun 21;23(6):828–834. doi: 10.1016/0006-291x(66)90562-6. [DOI] [PubMed] [Google Scholar]
- Lorand L., Chenoweth D., Gray A. Titration of the acceptor cross-linking sites in fibrin. Ann N Y Acad Sci. 1972 Dec 8;202:155–171. doi: 10.1111/j.1749-6632.1972.tb16328.x. [DOI] [PubMed] [Google Scholar]
- Lorand L., Credo R. B., Janus T. J. Factor XIII (fibrin-stabilizing factor). Methods Enzymol. 1981;80(Pt 100):333–341. doi: 10.1016/s0076-6879(81)80029-8. [DOI] [PubMed] [Google Scholar]
- Lorand L., Dailey J. E., Turner P. M. Fibronectin as a carrier for the transglutaminase from human erythrocytes. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1057–1059. doi: 10.1073/pnas.85.4.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorand L. Fibrinoligase: the fibrin-stabilizing factor system of blood plasma. Ann N Y Acad Sci. 1972 Dec 8;202:6–30. doi: 10.1111/j.1749-6632.1972.tb16319.x. [DOI] [PubMed] [Google Scholar]
- Lorand L., Murthy S. N., Velasco P. T., Karush F. Identification of transglutaminase substrates in inside-out vesicles from human erythrocytes: immunoblotting with anti-dansyl antibody. Biochem Biophys Res Commun. 1986 Jan 29;134(2):685–689. doi: 10.1016/s0006-291x(86)80474-0. [DOI] [PubMed] [Google Scholar]
- Martinez J., Rich E., Barsigian C. Transglutaminase-mediated cross-linking of fibrinogen by human umbilical vein endothelial cells. J Biol Chem. 1989 Dec 5;264(34):20502–20508. [PubMed] [Google Scholar]
- Mihalyi E. Physicochemical studies of bovine fibrinogen. IV. Ultraviolet absorption and its relation to the structure of the molecule. Biochemistry. 1968 Jan;7(1):208–223. doi: 10.1021/bi00841a026. [DOI] [PubMed] [Google Scholar]
- Moroi M., Inoue N., Yamasaki M. Analysis of the fibrin-polymerizing reaction using sodium dodecylsulfate-agarose gel electrophoresis. Biochim Biophys Acta. 1975 Jan 30;379(1):217–226. doi: 10.1016/0005-2795(75)90025-2. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Schwartz M. L., Pizzo S. V., Hill R. L., McKee P. A. Human Factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and cross-linking of fibrinogen and fibrin. J Biol Chem. 1973 Feb 25;248(4):1395–1407. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner P. M., Lorand L. Complexation of fibronectin with tissue transglutaminase. Biochemistry. 1989 Jan 24;28(2):628–635. doi: 10.1021/bi00428a032. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Williams-Ashman H. G., Notides A. C., Pabalan S. S., Lorand L. Transamidase reactions involved in the enzymic coagulation of semen: isolation of -glutamyl- -lysine dipeptide from clotted secretion protein of guinea pig seminal vesicle. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2322–2325. doi: 10.1073/pnas.69.8.2322. [DOI] [PMC free article] [PubMed] [Google Scholar]