Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(24):9708–9711. doi: 10.1073/pnas.87.24.9708

Steroidogenic activity of a peptide specified by the reversed sequence of corticotropin mRNA.

B L Clarke 1, J E Blalock 1
PMCID: PMC55242  PMID: 2175911

Abstract

The molecular recognition theory predicts that a reversed (3'----5') reading of an mRNA should yield a peptide that is structurally and functionally similar to that specified in the 5'----3' direction. We tested this idea by synthesizing a corticotropin (ACTH) analogue using a reverse reading of bovine mRNA for ACTH-(1-24). This peptide, designated ACTH-3'----5', had a similar hydropathic profile to native ACTH-5'----3' but had only 30% sequence homology and eight different charge substitutions. ACTH-3'----5' specifically bound to the surface of mouse Y-1 adrenal cells and to polyclonal anti-ACTH antibody. Additionally, ACTH-3'----5' stimulated cAMP synthesis and steroidogenesis in adrenal cells. These findings show that ACTH-3'----5' mimics the corticotropic properties of native ACTH, thereby further validating the molecular recognition theory.

Full text

PDF
9708

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blalock J. E., Bost K. L. Binding of peptides that are specified by complementary RNAs. Biochem J. 1986 Mar 15;234(3):679–683. doi: 10.1042/bj2340679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blalock J. E. Complementarity of peptides specified by 'sense' and 'antisense' strands of DNA. Trends Biotechnol. 1990 Jun;8(6):140–144. doi: 10.1016/0167-7799(90)90159-u. [DOI] [PubMed] [Google Scholar]
  3. Blalock J. E., Smith E. M. Hydropathic anti-complementarity of amino acids based on the genetic code. Biochem Biophys Res Commun. 1984 May 31;121(1):203–207. doi: 10.1016/0006-291x(84)90707-1. [DOI] [PubMed] [Google Scholar]
  4. Bost K. L., Smith E. M., Blalock J. E. Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1372–1375. doi: 10.1073/pnas.82.5.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarke B. L., Bost K. L. Differential expression of functional adrenocorticotropic hormone receptors by subpopulations of lymphocytes. J Immunol. 1989 Jul 15;143(2):464–469. [PubMed] [Google Scholar]
  6. Gallo-Payet N., Escher E. Adrenocorticotropin receptors in rat adrenal glomerulosa cells. Endocrinology. 1985 Jul;117(1):38–46. doi: 10.1210/endo-117-1-38. [DOI] [PubMed] [Google Scholar]
  7. Kaiser E. T., Kézdy F. J. Amphiphilic secondary structure: design of peptide hormones. Science. 1984 Jan 20;223(4633):249–255. doi: 10.1126/science.6322295. [DOI] [PubMed] [Google Scholar]
  8. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  9. Nekola M. B., Horvath A., Ge L. J., Coy D. H., Schally A. V. Suppression of ovulation in the rat by an orally active antagonist of luteinizing hormone-releasing hormone. Science. 1982 Oct 8;218(4568):160–162. doi: 10.1126/science.6750790. [DOI] [PubMed] [Google Scholar]
  10. Saez J. M., Morera A. M., Dazord A. Mediators of the effects of ACTH on adrenal cells. Adv Cyclic Nucleotide Res. 1981;14:563–579. [PubMed] [Google Scholar]
  11. Spiess J., Rivier J., Vale W. Characterization of rat hypothalamic growth hormone-releasing factor. Nature. 1983 Jun 9;303(5917):532–535. doi: 10.1038/303532a0. [DOI] [PubMed] [Google Scholar]
  12. Subbarao N. K., Parente R. A., Szoka F. C., Jr, Nadasdi L., Pongracz K. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry. 1987 Jun 2;26(11):2964–2972. doi: 10.1021/bi00385a002. [DOI] [PubMed] [Google Scholar]
  13. Torres B. A., Johnson H. M. Arginine vasopressin-binding peptides derived from the bovine and rat genomes differ in their abilities to block arginine vasopressin modulation of murine immune function. J Neuroimmunol. 1990 May;27(2-3):191–199. doi: 10.1016/0165-5728(90)90069-y. [DOI] [PubMed] [Google Scholar]
  14. Verhallen P. F., Demel R. A., Zwiers H., Gispen W. H. Adrenocorticotropic hormone (ACTH)-lipid interactions. Implications for involvement of amphipathic helix formation. Biochim Biophys Acta. 1984 Aug 22;775(2):246–254. doi: 10.1016/0005-2736(84)90176-7. [DOI] [PubMed] [Google Scholar]
  15. Ways D. K., Zimmerman C. F., Ontjes D. A. Inhibition of adrenocorticotropin effects on adrenal cell membranes by synthetic adrenocorticotropin analogues: correlation of binding and adenylate cyclase activation. Mol Pharmacol. 1976 Sep;12(5):789–799. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES