Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(24):9789–9793. doi: 10.1073/pnas.87.24.9789

An intrinsic membrane glycoprotein with cytosolically oriented n-linked sugars.

C H Pedemonte 1, G Sachs 1, J H Kaplan 1
PMCID: PMC55259  PMID: 2175915

Abstract

We demonstrate that the Na(+)-pump alpha-subunit polypeptide is glycosylated by using bovine milk galactosyltransferase, a specific enzyme which attaches galactose to terminal N-acetylglucosamine residues. The galactose acceptor sites are available for glycosylation only after permeabilization of right-side-out vesicles prepared from kidney outer medulla; therefore, the oligosaccharide moieties are facing the cytoplasm of the cell. We further show that the oligosaccharides are bound to asparagine residues of the alpha-subunit polypeptide, since the protein-carbohydrate linkage is hydrolyzed by peptide-N glycosidase F (an enzyme specific for N-linked sugars). Thus, the Na(+)-pump alpha subunit is a glycoprotein with its N-linked oligosaccharide moieties located at the cytosolic face of the cell membrane. Intrinsic membrane glycoproteins with such an oligosaccharide-protein linkage and cell membrane orientation have not been previously reported, to our knowledge.

Full text

PDF
9789

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeijon C., Hirschberg C. B. Intrinsic membrane glycoproteins with cytosol-oriented sugars in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1010–1014. doi: 10.1073/pnas.85.4.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Capasso J. M., Abeijon C., Hirschberg C. B. An intrinsic membrane glycoprotein of the golgi apparatus with O-linked N-acetylglucosamine facing the cytosol. J Biol Chem. 1988 Dec 25;263(36):19778–19782. [PubMed] [Google Scholar]
  3. Chu F. K. Requirements of cleavage of high mannose oligosaccharides in glycoproteins by peptide N-glycosidase F. J Biol Chem. 1986 Jan 5;261(1):172–177. [PubMed] [Google Scholar]
  4. Churchill L., Peterson G. L., Hokin L. E. The large subunit of (sodium + potassium)-activated adenosine triphosphatase from the electroplax of Electrophorus electricus is a glycoprotein. Biochem Biophys Res Commun. 1979 Sep 27;90(2):488–490. doi: 10.1016/0006-291x(79)91261-0. [DOI] [PubMed] [Google Scholar]
  5. Dixon J. F., Hokin L. E. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. Purification and properties of the enzyme from the electric organ of Electrophorus electricus. Arch Biochem Biophys. 1974 Aug;163(2):749–758. doi: 10.1016/0003-9861(74)90537-2. [DOI] [PubMed] [Google Scholar]
  6. Forbush B., 3rd Characterization of right-side-out membrane vesicles rich in (Na,K)-ATPase and isolated from dog kidney outer medulla. J Biol Chem. 1982 Nov 10;257(21):12678–12684. [PubMed] [Google Scholar]
  7. Freytag J. W., Reynolds J. A. Polypeptide molecular weights of the (Na+,K+)-ATPase from porcine kidney medulla. Biochemistry. 1981 Dec 8;20(25):7211–7214. doi: 10.1021/bi00528a024. [DOI] [PubMed] [Google Scholar]
  8. Giotta G. J. Quaternary structure of (Na+ + K+)-dependent adenosine triphosphatase. J Biol Chem. 1976 Mar 10;251(5):1247–1252. [PubMed] [Google Scholar]
  9. Goldstein I. J., Hayes C. E. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem. 1978;35:127–340. doi: 10.1016/s0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  10. Hart G. W., Brew K., Grant G. A., Bradshaw R. A., Lennarz W. J. Primary structural requirements for the enzymatic formation of the N-glycosidic bond in glycoproteins. Studies with natural and synthetic peptides. J Biol Chem. 1979 Oct 10;254(19):9747–9753. [PubMed] [Google Scholar]
  11. Hart G. W., Haltiwanger R. S., Holt G. D., Kelly W. G. Glycosylation in the nucleus and cytoplasm. Annu Rev Biochem. 1989;58:841–874. doi: 10.1146/annurev.bi.58.070189.004205. [DOI] [PubMed] [Google Scholar]
  12. Hase S., Fujimura K., Kanoh M., Ikenaka T. Studies on heterogeneity of Taka-amylase A: isolation of an amylase having one N-acetylglucosamine residue as the sugar chain. J Biochem. 1982 Jul;92(1):265–270. doi: 10.1093/oxfordjournals.jbchem.a133922. [DOI] [PubMed] [Google Scholar]
  13. Hokin L. E., Dahl J. L., Deupree J. D., Dioxon J. F., Hackney J. F., Perdue J. F. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of Squalus acanthias. J Biol Chem. 1973 Apr 10;248(7):2593–2605. [PubMed] [Google Scholar]
  14. Holt G. D., Haltiwanger R. S., Torres C. R., Hart G. W. Erythrocytes contain cytoplasmic glycoproteins. O-linked GlcNAc on Band 4.1. J Biol Chem. 1987 Nov 5;262(31):14847–14850. [PubMed] [Google Scholar]
  15. Kaplan J. H. Ion movements through the sodium pump. Annu Rev Physiol. 1985;47:535–544. doi: 10.1146/annurev.ph.47.030185.002535. [DOI] [PubMed] [Google Scholar]
  16. Kashgarian M., Biemesderfer D., Caplan M., Forbush B., 3rd Monoclonal antibody to Na,K-ATPase: immunocytochemical localization along nephron segments. Kidney Int. 1985 Dec;28(6):899–913. doi: 10.1038/ki.1985.216. [DOI] [PubMed] [Google Scholar]
  17. Kyte J. Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase. J Biol Chem. 1972 Dec 10;247(23):7642–7649. [PubMed] [Google Scholar]
  18. Kyte J., Xu K. Y., Bayer R. Demonstration that lysine-501 of the alpha polypeptide of native sodium and potassium ion activated adenosinetriphosphatase is located on its cytoplasmic surface. Biochemistry. 1987 Dec 15;26(25):8350–8360. doi: 10.1021/bi00399a049. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lehle L., Tanner W. Glycosyl transfer from dolichyl phosphate sugars to endogenous and exogenous glycoprotein acceptors in yeast. Eur J Biochem. 1978 Feb;83(2):563–570. doi: 10.1111/j.1432-1033.1978.tb12124.x. [DOI] [PubMed] [Google Scholar]
  21. Lodish H. F., Braell W. A., Schwartz A. L., Strous G. J., Zilberstein A. Synthesis and assembly of membrane and organelle proteins. Int Rev Cytol Suppl. 1981;12:247–307. doi: 10.1016/b978-0-12-364373-5.50016-0. [DOI] [PubMed] [Google Scholar]
  22. Magee S. C., Mawal R., Ebner K. E. Multiple forms of galactosyltransferase from bovine milk. Biochemistry. 1974 Jan 1;13(1):99–102. doi: 10.1021/bi00698a016. [DOI] [PubMed] [Google Scholar]
  23. Munakata H., Schmid K., Collins J. H., Zot A. S., Lane L. K., Schwartz A. The alpha and beta subunits of lamb kidney Na,K-ATPase are both glycoproteins. Biochem Biophys Res Commun. 1982 Jul 16;107(1):229–231. doi: 10.1016/0006-291x(82)91693-x. [DOI] [PubMed] [Google Scholar]
  24. Omori K., Takemura S., Omori K., Mega T., Tashiro Y. Isolation of the alpha and beta subunits of canine (Na+,K+)ATPase by using SDS-PAGE and lectin-Sepharose. J Biochem. 1983 Dec;94(6):1857–1866. doi: 10.1093/oxfordjournals.jbchem.a134539. [DOI] [PubMed] [Google Scholar]
  25. Pedemonte C. H., Kaplan J. H. Carbodiimide inactivation of Na,K-ATPase, via intramolecular cross-link formation, is due to inhibition of phosphorylation. J Biol Chem. 1986 Dec 15;261(35):16660–16665. [PubMed] [Google Scholar]
  26. Pennington J., Hokin L. E. Effects of wheat germ agglutinin on the coupled transports of sodium and potassium in reconstituted (Na,K)-ATPase liposomes. J Biol Chem. 1979 Oct 10;254(19):9754–9760. [PubMed] [Google Scholar]
  27. Peters W. H., de Pont J. J., Koppers A., Bonting S. L. Studies on (Na+ + K+)-activated ATPase. XLVII. Chemical composition, molecular weight and molar ratio of the subunits of the enzyme from rabbit kidney outer medulla. Biochim Biophys Acta. 1981 Feb 20;641(1):55–70. doi: 10.1016/0005-2736(81)90568-x. [DOI] [PubMed] [Google Scholar]
  28. Peterson G. L., Ewing R. D., Hootman S. R., Conte F. P. Large scale partial purification and molecular and kinetic properties of the (Na + K)-activated adenosine triphosphatase from Artemia salina nauplii. J Biol Chem. 1978 Jul 10;253(13):4762–4770. [PubMed] [Google Scholar]
  29. Peterson G. L., Hokin L. E. Improved purification of brine-shrimp (Artemia saline) (Na+ + K+)-activated adenosine triphosphatase and amino-acid and carbohydrate analyses of the isolated subunits. Biochem J. 1980 Oct 15;192(1):107–118. doi: 10.1042/bj1920107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sharma C. B., Lehle L., Tanner W. N-Glycosylation of yeast proteins. Characterization of the solubilized oligosaccharyl transferase. Eur J Biochem. 1981 May;116(1):101–108. doi: 10.1111/j.1432-1033.1981.tb05306.x. [DOI] [PubMed] [Google Scholar]
  31. Sharon N., Lis H. Glycoproteins: research booming on long-ignored ubiquitous compounds. Mol Cell Biochem. 1982 Feb 19;42(3):167–187. doi: 10.1007/BF00238511. [DOI] [PubMed] [Google Scholar]
  32. Shull G. E., Schwartz A., Lingrel J. B. Amino-acid sequence of the catalytic subunit of the (Na+ + K+)ATPase deduced from a complementary DNA. Nature. 1985 Aug 22;316(6030):691–695. doi: 10.1038/316691a0. [DOI] [PubMed] [Google Scholar]
  33. Tamkun M. M., Fambrough D. M. The (Na+ + K+)-ATPase of chick sensory neurons. Studies on biosynthesis and intracellular transport. J Biol Chem. 1986 Jan 25;261(3):1009–1019. [PubMed] [Google Scholar]
  34. Zamofing D., Rossier B. C., Geering K. Role of the Na,K-ATPase beta-subunit in the cellular accumulation and maturation of the enzyme as assessed by glycosylation inhibitors. J Membr Biol. 1988 Aug;104(1):69–79. doi: 10.1007/BF01871903. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES