Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(24):9813–9817. doi: 10.1073/pnas.87.24.9813

Cloning of cDNAs encoding amphibian bombesin: evidence for the relationship between bombesin and gastrin-releasing peptide.

E R Spindel 1, B W Gibson 1, J R Reeve Jr 1, M Kelly 1
PMCID: PMC55264  PMID: 2263631

Abstract

Bombesin is a tetradecapeptide originally isolated from frog skin; its mammalian homologue is the 27-amino acid peptide gastrin-releasing peptide (GRP). cDNAs encoding GRP have been cloned from diverse species, but little is yet known about the amphibian bombesin precursor. Mass spectrometry of HPLC-separated skin exudate from Bombina orientalis was performed to demonstrate the existence of authentic bombesin in the skin of this frog. A cDNA library was prepared from the skin of B. orientalis and mixed oligonucleotide probes were used to isolate cDNAs encoding amphibian bombesin. Sequence analysis revealed that bombesin is encoded in a 119-amino acid prohormone. The carboxyl terminus of bombesin is flanked by two basic amino acids; the amino terminus is not flanked by basic amino acids but is flanked by a chymotryptic-like cleavage site. Northern blot analysis demonstrated similarly sized bombesin mRNAs in frog skin, brain, and stomach. Polymerase chain reaction was used to show that the skin and gut bombesin mRNAs encoded the identical prohormones. Prohormone processing, however, differed between skin and gut. Chromatography showed the presence of only authentic bombesin in skin whereas gut extracts contained two peaks of bombesin immunoreactivity, one consistent in size with bombesin and one closer in size to mammalian GRP. Thus the same bombesin prohormone is processed solely to bombesin in skin but is processed to a peptide similar in size to bombesin and to a peptide similar in size to mammalian GRP in stomach.

Full text

PDF
9813

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anastasi A., Erspamer V., Bucci M. Isolation and structure of bombesin and alytesin, 2 analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia. 1971 Feb 15;27(2):166–167. doi: 10.1007/BF02145873. [DOI] [PubMed] [Google Scholar]
  2. Brown M., Allen R., Villarreal J., Rivier J., Vale W. Bombesin-like activity: radioimmunologic assessment in biological tissues. Life Sci. 1978 Dec 31;23(27-28):2721–2728. doi: 10.1016/0024-3205(78)90652-5. [DOI] [PubMed] [Google Scholar]
  3. Chen E. Y., Seeburg P. H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dockray G. J., Hopkins C. R. Caerulein secretion by dermal glands in Xenopus laevis. J Cell Biol. 1975 Mar;64(3):724–733. doi: 10.1083/jcb.64.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Falick A. M., Wang G. H., Walls F. C. Ion source for liquid matrix secondary ionization mass spectrometry. Anal Chem. 1986 Jun;58(7):1308–1311. doi: 10.1021/ac00298a009. [DOI] [PubMed] [Google Scholar]
  7. Gibson B. W., Poulter L., Williams D. H. A mass spectrometric assay for novel peptides: application to Xenopus laevis skin secretions. Peptides. 1985;6 (Suppl 3):23–27. doi: 10.1016/0196-9781(85)90346-8. [DOI] [PubMed] [Google Scholar]
  8. Gibson B. W., Poulter L., Williams D. H., Maggio J. E. Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis. J Biol Chem. 1986 Apr 25;261(12):5341–5349. [PubMed] [Google Scholar]
  9. Giovannini M. G., Poulter L., Gibson B. W., Williams D. H. Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones. Biochem J. 1987 Apr 1;243(1):113–120. doi: 10.1042/bj2430113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hudson P., Haley J., Cronk M., Shine J., Niall H. Molecular cloning and characterization of cDNA sequences coding for rat relaxin. Nature. 1981 May 14;291(5811):127–131. doi: 10.1038/291127a0. [DOI] [PubMed] [Google Scholar]
  11. Jackson I. M., Reichlin S. Thyrotropin-releasing hormone in the blood of the frog, Rana pipiens: its nature and possible derivation from regional locations in the skin. Endocrinology. 1979 Jun;104(6):1814–1821. doi: 10.1210/endo-104-6-1814. [DOI] [PubMed] [Google Scholar]
  12. Krane I. M., Naylor S. L., Helin-Davis D., Chin W. W., Spindel E. R. Molecular cloning of cDNAs encoding the human bombesin-like peptide neuromedin B. Chromosomal localization and comparison to cDNAs encoding its amphibian homolog ranatensin. J Biol Chem. 1988 Sep 15;263(26):13317–13323. [PubMed] [Google Scholar]
  13. McDonald T. J., Ghatei M. A., Bloom S. R., Adrian T. E., Mochizuki T., Yanaihara C., Yanaihara N. Dose-response comparisons of canine plasma gastroenteropancreatic hormone responses to bombesin and the porcine gastrin-releasing peptide (GRP). Regul Pept. 1983 Jan;5(2):125–137. doi: 10.1016/0167-0115(83)90120-9. [DOI] [PubMed] [Google Scholar]
  14. McDonald T. J., Jörnvall H., Ghatei M., Bloom S. R., Mutt V. Characterization of an avian gastric (proventricular) peptide having sequence homology with the porcine gastrin-releasing peptide and the amphibian peptides bombesin and alytesin. FEBS Lett. 1980 Dec 15;122(1):45–48. doi: 10.1016/0014-5793(80)80398-x. [DOI] [PubMed] [Google Scholar]
  15. McDonald T. J., Jörnvall H., Nilsson G., Vagne M., Ghatei M., Bloom S. R., Mutt V. Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun. 1979 Sep 12;90(1):227–233. doi: 10.1016/0006-291x(79)91614-0. [DOI] [PubMed] [Google Scholar]
  16. Minamino N., Kangawa K., Matsuo H. Neuromedin C: a bombesin-like peptide identified in porcine spinal cord. Biochem Biophys Res Commun. 1984 Feb 29;119(1):14–20. doi: 10.1016/0006-291x(84)91611-5. [DOI] [PubMed] [Google Scholar]
  17. Moody T. W., Pert C. B. Bombesin-like peptides in rat brain: quantitation and biochemical characterization. Biochem Biophys Res Commun. 1979 Sep 12;90(1):7–14. doi: 10.1016/0006-291x(79)91582-1. [DOI] [PubMed] [Google Scholar]
  18. Orloff M. S., Reeve J. R., Jr, Ben-Avram C. M., Shively J. E., Walsh J. H. Isolation and sequence analysis of human bombesin-like peptides. Peptides. 1984 Sep-Oct;5(5):865–870. doi: 10.1016/0196-9781(84)90108-6. [DOI] [PubMed] [Google Scholar]
  19. Perlman D., Halvorson H. O. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol. 1983 Jun 25;167(2):391–409. doi: 10.1016/s0022-2836(83)80341-6. [DOI] [PubMed] [Google Scholar]
  20. Reeve J. R., Jr, Walsh J. H., Chew P., Clark B., Hawke D., Shively J. E. Amino acid sequences of three bombesin-like peptides from canine intestine extracts. J Biol Chem. 1983 May 10;258(9):5582–5588. [PubMed] [Google Scholar]
  21. Richter K., Egger R., Kreil G. Molecular cloning of a cDNA encoding the bombesin precursor in skin of Bombina variegata. FEBS Lett. 1990 Mar 26;262(2):353–355. doi: 10.1016/0014-5793(90)80227-a. [DOI] [PubMed] [Google Scholar]
  22. Shaw C., Thim L., Conlon J. M. Primary structure and tissue distribution of guinea pig gastrin-releasing peptide. J Neurochem. 1987 Nov;49(5):1348–1354. doi: 10.1111/j.1471-4159.1987.tb00998.x. [DOI] [PubMed] [Google Scholar]
  23. Spindel E. R., Chin W. W., Price J., Rees L. H., Besser G. M., Habener J. F. Cloning and characterization of cDNAs encoding human gastrin-releasing peptide. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5699–5703. doi: 10.1073/pnas.81.18.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spindel E. R., Eipper B. A., Zilberberg M. D., Mains R. E., Chin W. W. Cerulein mRNA and peptide alpha-amidation activity in the skin of Xenopus laevis: stimulation by norepinephrine. Gen Comp Endocrinol. 1987 Jul;67(1):67–76. doi: 10.1016/0016-6480(87)90206-1. [DOI] [PubMed] [Google Scholar]
  25. Spindel E. R., Sunday M. E., Hofler H., Wolfe H. J., Habener J. F., Chin W. W. Transient elevation of messenger RNA encoding gastrin-releasing peptide, a putative pulmonary growth factor in human fetal lung. J Clin Invest. 1987 Oct;80(4):1172–1179. doi: 10.1172/JCI113176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Walsh J. H., Lechago J., Wong H. C., Rosenquist G. L. Presence of ranatensin-like and bombesin-like peptides in amphibian brains. Regul Pept. 1982 Jan;3(1):1–13. doi: 10.1016/0167-0115(82)90002-7. [DOI] [PubMed] [Google Scholar]
  27. Walsh J. H., Wong H. C., Dockray G. J. Bombesin-like peptides in mammals. Fed Proc. 1979 Aug;38(9):2315–2319. [PubMed] [Google Scholar]
  28. Wharton J., Polak J. M., Bloom S. R., Ghatei M. A., Solcia E., Brown M. R., Pearse A. G. Bombesin-like immunoreactivity in the lung. Nature. 1978 Jun 29;273(5665):769–770. doi: 10.1038/273769a0. [DOI] [PubMed] [Google Scholar]
  29. Zoeller R. T., Lebacq-Verheyden A. M., Battey J. F. Distribution of two distinct messenger ribonucleic acids encoding gastrin-releasing peptide in rat brain. Peptides. 1989 Mar-Apr;10(2):415–422. doi: 10.1016/0196-9781(89)90052-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES