Abstract
Intercellular coupling was studied in cultured rat optic nerve astrocytes individually characterized by A2B5 antibody staining. The presence of cell coupling was assessed by injecting single cells with the low molecular weight fluorescent dye Lucifer yellow and noting dye passage into adjacent cells; cell coupling was also studied by analyzing the decay phase of current transients recorded in response to small voltage steps using whole-cell patch-clamp recording. Cell coupling was restricted to A2B5- astrocytes, the majority of which had a flat fibroblast-like appearance and was never observed in A2B5+ stellate-shaped astrocytes. Furthermore, A2B5- astrocytes showed coupling only to A2B5- and never to A2B5+ astrocytes. Analysis of current transients provided an additional indicator for cell coupling. Astrocytes that showed dye coupling to at least one neighboring cell required the sum of two exponential functions to fit current transients, whereas a single exponential function sufficed to fit transients in cells that were not dye coupled. The specificity of cell coupling in cultured rat optic nerve astrocytes suggests that predominantly A2B5- astrocytes comprise a coupled glial syncytium; this physiological feature of these cells may be a specialized adaptation for "spatial buffering," the transport of K+ away from areas of focal extracellular accumulation. On the other hand, A2B5+ astrocytes form an uncoupled subpopulation of rat optic nerve glial cells that may serve different functions.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anders J. J. Lactic acid inhibition of gap junctional intercellular communication in in vitro astrocytes as measured by fluorescence recovery after laser photobleaching. Glia. 1988;1(6):371–379. doi: 10.1002/glia.440010604. [DOI] [PubMed] [Google Scholar]
- Barres B. A., Chun L. L., Corey D. P. Glial and neuronal forms of the voltage-dependent sodium channel: characteristics and cell-type distribution. Neuron. 1989 Apr;2(4):1375–1388. doi: 10.1016/0896-6273(89)90076-7. [DOI] [PubMed] [Google Scholar]
- Barres B. A., Chun L. L., Corey D. P. Ion channels in vertebrate glia. Annu Rev Neurosci. 1990;13:441–474. doi: 10.1146/annurev.ne.13.030190.002301. [DOI] [PubMed] [Google Scholar]
- Bennett M. V. Physiology of electrotonic junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):509–539. doi: 10.1111/j.1749-6632.1966.tb50178.x. [DOI] [PubMed] [Google Scholar]
- Butt A. M., Ransom B. R. Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase. Glia. 1989;2(6):470–475. doi: 10.1002/glia.440020609. [DOI] [PubMed] [Google Scholar]
- Conner J. D., Detwiler P. B., Sarthy P. V. Ionic and electrophysiological properties of retinal Müller (glial) cells of the turtle. J Physiol. 1985 May;362:79–92. doi: 10.1113/jphysiol.1985.sp015664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer G., Kettenmann H. Cultured astrocytes form a syncytium after maturation. Exp Cell Res. 1985 Aug;159(2):273–279. doi: 10.1016/s0014-4827(85)80001-x. [DOI] [PubMed] [Google Scholar]
- Gutnick M. J., Connors B. W., Ransom B. R. Dye-coupling between glial cells in the guinea pig neocortical slice. Brain Res. 1981 Jun 1;213(2):486–492. doi: 10.1016/0006-8993(81)90259-6. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Kettenmann H., Orkand R. K., Schachner M. Coupling among identified cells in mammalian nervous system cultures. J Neurosci. 1983 Mar;3(3):506–516. doi: 10.1523/JNEUROSCI.03-03-00506.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kettenmann H., Ransom B. R. Electrical coupling between astrocytes and between oligodendrocytes studied in mammalian cell cultures. Glia. 1988;1(1):64–73. doi: 10.1002/glia.440010108. [DOI] [PubMed] [Google Scholar]
- Levi G., Gallo V., Ciotti M. T. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and "neuron-like" gamma-aminobutyric acid transport. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1504–1508. doi: 10.1073/pnas.83.5.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loewenstein W. R. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981 Oct;61(4):829–913. doi: 10.1152/physrev.1981.61.4.829. [DOI] [PubMed] [Google Scholar]
- Miller Robert H., Fulton Barbara P., Raff Martin C. A Novel Type of Glial Cell Associated with Nodes of Ranvier in Rat Optic Nerve. Eur J Neurosci. 1989 Mar;1(2):172–180. doi: 10.1111/j.1460-9568.1989.tb00785.x. [DOI] [PubMed] [Google Scholar]
- Minturn J. E., Black J. A., Angelides K. J., Waxman S. G. Sodium channel expression detected with antibody 7493 in A2B5+ and A2B5- astrocytes from rat optic nerve in vitro. Glia. 1990;3(5):358–367. doi: 10.1002/glia.440030507. [DOI] [PubMed] [Google Scholar]
- Mobbs P., Brew H., Attwell D. A quantitative analysis of glial cell coupling in the retina of the axolotl (Ambystoma mexicanum). Brain Res. 1988 Sep 20;460(2):235–245. doi: 10.1016/0006-8993(88)90368-x. [DOI] [PubMed] [Google Scholar]
- Murphy A. D., Hadley R. D., Kater S. B. Axotomy-induced parallel increases in electrical and dye coupling between identified neurons of Helisoma. J Neurosci. 1983 Jul;3(7):1422–1429. doi: 10.1523/JNEUROSCI.03-07-01422.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman E. A. Regional specialization of retinal glial cell membrane. Nature. 1984 May 10;309(5964):155–157. doi: 10.1038/309155a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raff M. C., Abney E. R., Cohen J., Lindsay R., Noble M. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J Neurosci. 1983 Jun;3(6):1289–1300. doi: 10.1523/JNEUROSCI.03-06-01289.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raff M. C. Glial cell diversification in the rat optic nerve. Science. 1989 Mar 17;243(4897):1450–1455. doi: 10.1126/science.2648568. [DOI] [PubMed] [Google Scholar]
- Ransom B. R., Kettenmann H. Electrical coupling, without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture. Glia. 1990;3(4):258–266. doi: 10.1002/glia.440030405. [DOI] [PubMed] [Google Scholar]
- Somogyi R., Kolb H. A. Cell-to-cell channel conductance during loss of gap junctional coupling in pairs of pancreatic acinar and Chinese hamster ovary cells. Pflugers Arch. 1988 Jul;412(1-2):54–65. doi: 10.1007/BF00583731. [DOI] [PubMed] [Google Scholar]
- Spray D. C., Bennett M. V. Physiology and pharmacology of gap junctions. Annu Rev Physiol. 1985;47:281–303. doi: 10.1146/annurev.ph.47.030185.001433. [DOI] [PubMed] [Google Scholar]
- Spray D. C., Saez J. C., Brosius D., Bennett M. V., Hertzberg E. L. Isolated liver gap junctions: gating of transjunctional currents is similar to that in intact pairs of rat hepatocytes. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5494–5497. doi: 10.1073/pnas.83.15.5494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell. 1978 Jul;14(3):741–759. doi: 10.1016/0092-8674(78)90256-8. [DOI] [PubMed] [Google Scholar]
- Waxman S. G., Black J. A. Freeze-fracture ultrastructure of the perinodal astrocyte and associated glial junctions. Brain Res. 1984 Aug 6;308(1):77–87. doi: 10.1016/0006-8993(84)90919-3. [DOI] [PubMed] [Google Scholar]