Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
letter
. 2017 Jul 25;61(8):e00255-17. doi: 10.1128/AAC.00255-17

Carbapenemase-Producing Enterobacteriaceae Isolates from Edo State, Nigeria

Christiana Jesumirhewe a,, Burkhard Springer b, Sarah Lepuschitz b, Franz Allerberger b, Werner Ruppitsch b
PMCID: PMC5527642  PMID: 28607027

LETTER

The emergence and spread of carbapenem-resistant Enterobacteriaceae (CRE) are a global health problem that is of great concern to public health services (1, 2). The purpose of this study was to determine the frequency of CRE in three Nigerian hospitals and to characterize the resistance mechanisms of such isolates.

A total of 218 consecutive clinical isolates of Enterobacteriaceae based on inclusion criteria were collected from March to May 2015 at three medical microbiology laboratories of hospitals in Edo State, Nigeria (see Table S1 in the supplemental material). Screening for carbapenem resistance was performed using meropenem and ertapenem discs (10 μg; Oxoid, United Kingdom) according to EUCAST guidelines (3). The Kirby-Bauer susceptibility testing technique (4) and Etest method were carried out, and results were interpreted using EUCAST criteria (5). Identification of the involved resistance mechanisms was determined by whole-genome sequencing (WGS).

Out of 218 consecutive clinical Enterobacteriaceae isolates, 9 (4.1%) were further investigated due to cutoff values above the EUCAST screening recommendations (Table 1). All isolates showed resistance to piperacillin-tazobactam and amoxicillin-clavulanic acid, all but isolate Ec4349 showed resistance to fluoroquinolones and cefotaxime, and all but two isolates each showed resistance to ceftazidime (Ec4349 and Ecl2840_1) and ertapenem (Ec4349 and Ecl10_14_15). Only Ec4349, Ecl2845, Ecl2840_1, and EclQ9 were sensitive to cefepime and aztreonam. The carbapenemase inactivation method (6) revealed positive results for all nine CRE isolates. By application of WGS, one Klebsiella pneumoniae isolate harbored the blaOXA-181 gene; two K. pneumoniae isolates harbored the blaNDM-1 gene. The blaOXA-48 gene was detected in one Escherichia coli isolate, one K. pneumoniae isolate, and four Enterobacter cloacae isolates, respectively. All isolates had a single carbapenemase resistance gene on their draft genome fragment. Thirteen plasmid incompatibility groups were identified among the nine CRE isolates. Multilocus sequence typing (MLST) grouped the nine isolates into five sequence types.

TABLE 1.

Characteristics of carbapenem-resistant Enterobacteriaceae isolates

Isolatea Hospitalb Clinical specimen MIC values (μg/ml)c Resistance genes STd GenBank accession no.e Plasmid replicon(s)f
Kp1337LF UBTH Urine MEM, 0.75; ETP, 3; COL, 1 aac(6')lb-cr, aac(3)-lla, str A, aadA1, str B, blaTEM-1B, blaCTX-M-15, blaSHV-11, blaOXA-181, blaOXA-1, mph(A), catA1, catB3, qnrS1, qnrB2, oqxA, oqxB, sul1, tet(A), dfrA15 11 SAMN06704546 IncFIB(Mar), ColKP3, IncX3,* IncFII(K), IncFIB(K), IncR
Kp852 UBTH Urine MEM, 24; ETP, 32; COL, 1 aadA1, aac(3)-lla, aacA4, aph(3')-Vla, arm A, aadA2, aac(6')lb-cr, blaSHV-28, blaCTX-M-15, blaNDM-1, blaOXA-1, msr(E), mphE, catB3, oqxB, oqxA, aac(6')-lb-cr, qnrB1, sul1, tet(A), dfrA12 15 SAMN06704523 Col(BS512), IncFIB(pKPHS1), IncFII, IncFIA(HI1), IncR, IncFIB(K), IncFIB(Mar), IncHI1B*
Kp852K UBTH Urine MEM, 32; ETP, 24; COL, 0.75 aadA1, aac(3)-lla, aacA4, aph(3')-Vla, arm A, aadA2, aac(6')lb-cr, blaSHV-28, blaCTX-M-15, blaNDM-1, blaOXA-1, msr(E), mphE, catB3, oqxB, oqxA, aac(6')-lb-cr, qnrB1, sul1, tet(A), dfrA12 15 SAMN06704522 Col(BS512), IncFIB(pKPHS1), IncFII, IncFIA(HI1), IncR, IncFIB(K), IncFIB(Mar), IncHI1B*
Kp872 UBTH Endocervical swab MEM, 4; ETP, 1.5; COL, 0.38 str A, str B, aadA2, aac(3)-lla, blaCTX-M-15, blaOXA-48, blaTEM-1B, blaSHV-11, oqxB, oqxA, sul1, sul2, tet(D), dfrA14 340 SAMN06704513 IncFIA(HI1), IncR, IncL/M(pOXA-48)*
Ecl10_14_15 CH Peritoneal fluid MEM, 1.5; ETP, 0.75; COL, 0.75 blaACT-5, blaOXA-48, qnrB1, dfrA14 78 SAMN06704512 IncL/M(pOXA-48)*
Ecl2845 UBTH Urine MEM, 0.75; ETP, 2; COL, 0.75 blaACT-5, blaOXA-48 78 SAMN06704511 IncL/M(pOXA-48)*
EclQ9 UBTH Unidentified source MEM, 0.75; ETP, 1.5; COL, 0.75 blaACT-5, blaOXA-48 78 SAMN06703827 IncL/M(pOXA-48)*
Ecl2840_1 UBTH Urine MEM, 4; ETP, 4; COL, 1 blaACT-5, blaOXA-48 78 SAMN06703828 IncL/M(pOXA-48)*
Ec4349 UBTH Urine MEM, 0.25; ETP, 0.75; COL, 0.38 str A, str B, blaTEM-1B, blaOXA-48, sul2, tet(A), dfrA14 1408 SAMN06703826 Col3M, IncL/M(pOXA-48),* IncR
a

Ec, Escherichia coli; Kp, Klebsiella pneumoniae; Ecl, Enterobacter cloacae.

b

UBTH, University of Benin Teaching Hospital; CH, Central Hospital, Benin.

c

MEM, meropenem; ETP, ertapenem; COL, colistin.

d

ST, sequence type.

e

Accession numbers are shown for the carbapenem resistance gene.

f

*, plasmid replicon type harboring the carbapenem resistance gene.

Previous reports from Nigeria on molecular characterization of carbapenem resistance genes have identified genes such as blaVIM, blaGES, blaNDM, blaOXA-181, and blaKPC (710). blaOXA-48, obtained from our study, has only been determined phenotypically. To the best of our knowledge, our findings, where six out of nine carbapenemase-producing isolates harbored the blaOXA-48 gene, represent the first molecular determination of the blaOXA-48 gene for Nigeria. The presence of different plasmid replicon types in carbapenemase-producing Enterobacteriaceae (CPE) underlines their importance in the dissemination of resistance genes. The IncL/M plasmid type was found in all of our OXA-48-producing isolates, correlating with previous reports indicating that the current spread of OXA-48 β-lactamase producers is mainly related to the diffusion of this plasmid (11).

Occurrence of CPE has been reported globally (1214). In Nigeria, most previous reports characterized CRE phenotypically (1517). Only a few studies used molecular methods, which are considered the “gold standard” for identification of carbapenemase-producing bacteria (12, 18). Carbapenem resistance is of particular concern as carbapenems are often the last available treatment option for infections due to multidrug-resistant Enterobacteriaceae (19). To the best of our knowledge, we are reporting the first genomic characterization of CRE from Nigeria. Detailed characterization of CRE is required to combat this worldwide emerging threat and improve patient outcomes.

Accession number(s).

WGS results from our isolates have been deposited in GenBank under the accession numbers listed in Table 1.

Supplementary Material

Supplemental material

ACKNOWLEDGMENTS

This work was supported by an Ernst-Mach grant 2015/2016 to C.J. by the Austrian Federal Ministry of Science, Research and Economy (BMWFW).

We thank Petra Hasenberger and Silke Stadlbauer for assistance with the antibiotic susceptibility testing.

Footnotes

Supplemental material for this article may be found at https://doi.org/10.1128/AAC.00255-17.

REFERENCES

  • 1.Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Pelad N, Nativ R, Schlaeffer F, Sherf M. 2009. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol 30:972–976. doi: 10.1086/605922. [DOI] [PubMed] [Google Scholar]
  • 2.Daikos GL, Petrikkos P, Psichogiou M, Kosmidis C, Vryonis E, Skoutelis A, Georgousi K, Tzouvelekis LS, Tassios PT, Bamia C, Petrikkos G. 2009. Prospective observational study of the impact of VIM-1 metallo-β-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother 53:1868–1873. doi: 10.1128/AAC.00782-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.European Committee on Antimicrobial Susceptibility Testing 11 December 2013. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance, version 1.0, p 4–10. http://www.eucast.org. [Google Scholar]
  • 4.Bauer AW, Kirby MM, Sherris JC, Truck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496. [PubMed] [Google Scholar]
  • 5.European Committee on Antimicrobial Susceptibility Testing. 2017. Breakpoint tables for interpretation of MICs and zone diameters. Version 7.1 http://www.eucast.org.
  • 6.van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. 2015. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in Gram-negative rods. PLoS One 10:e0123690. doi: 10.1371/journal.pone.0123690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Mohammed Y, Zailani SB, Onipede AO. 2015. Characterization of KPC, NDM and VIM type carbapenem resistant Enterobacteriaceae from North Eastern, Nigeria. J Biosci Med 3:100–107. doi: 10.4236/jbm.2015.311013. [DOI] [Google Scholar]
  • 8.Ogbolu DO, Webber MA. 2014. High-level and novel mechanisms of carbapenem resistance in Gram-negative bacteria from tertiary hospitals in Nigeria. Int J Antimicrob Agents 43:412–417. doi: 10.1016/j.ijantimicag.2014.01.014. [DOI] [PubMed] [Google Scholar]
  • 9.Walkty A, Gilmour M, Simner P, Embil JM, Boyd D, Mulvey M, Karlowsky J. 2015. Isolation of multiple carbapenemase-producing Gram-negative bacilli from a patient recently hospitalized in Nigeria. J Diagn Microbiol Infect Dis 81:296–298. doi: 10.1016/j.diagmicrobio.2015.01.005. [DOI] [PubMed] [Google Scholar]
  • 10.Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ, Bouchillon SK, Sahm DF, Bradford PA. 2016. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:1067–1078. doi: 10.1128/AAC.02379-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Potron A, Poirel L, Rondinaud E, Nordmann P. 2013. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill 18:31. doi: 10.2807/1560-7917.ES2013.18.31.20549. [DOI] [PubMed] [Google Scholar]
  • 12.Nordmann P, Naas T, Poirel L. 2011. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798. doi: 10.3201/eid1710.110655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Queenan AM, Bush K. 2007. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20:440–458. doi: 10.1128/CMR.00001-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Grundmann H, Livermore DM, Giske CG, Canton R, Rossolini GM, Campos J, Vatopoulos A, Gniadkowski M, Toth A, Pfeifer Y, Jarlier V, Carmeli Y, CNSE Working Group. 2010. Carbapenem-non-susceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Euro Surveill 15:19711. [DOI] [PubMed] [Google Scholar]
  • 15.Enwuru NV, Enwuru CA, Ogbonna SO, Adepoju-Bello AA. 2011. Metallo-β-lactamase production by Escherichia coli and Klebsiella species isolated from hospital and community subjects in Lagos, Nigeria. Nat Sci 9:1–5. [Google Scholar]
  • 16.Yusuf I, Magashi AM, Firdausi FS, Sharif AA, Getso MI, Bala JA, Aliyu IA. 2012. Phenotypic detection of carbapenemases in members of Enterobacteriaceae in Kano, Nigeria. Int J Sci Technol 2:802–806. [Google Scholar]
  • 17.Oduyebo OO, Falayi OM, Oshun P, Ettu AO. 2015. Phenotypic determination of carbapenemase producing Enterobacteriaceae isolates from clinical specimens at a tertiary hospital in Lagos, Nigeria. Niger Postgrad Med J 22:223–227. doi: 10.4103/1117-1936.173973. [DOI] [PubMed] [Google Scholar]
  • 18.Birgy A, Bidet P, Genel N, Dolt C, Decré D, Arlet G, Bingen E. 2012. Phenotypic screening of carbapenemases and associated β-lactamases in carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 50:1295–1302. doi: 10.1128/JCM.06131-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Livermore DM, Woodford N. 2006. The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 14:413–420. doi: 10.1016/j.tim.2006.07.008. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplemental material

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES