Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1982;1(2):181–186. doi: 10.1002/j.1460-2075.1982.tb01144.x

ADP-ribosylation of microtubule proteins as catalyzed by cholera toxin.

Y Amir-Zaltsman, E Ezra, T Scherson, A Zutra, U Z Littauer, Y Salomon
PMCID: PMC553017  PMID: 6765171

Abstract

Incubation of purified rat brain tubulin with cholera toxin and radiolabeled [32P] or [8-3H]NAD results in the labeling of both alpha and beta subunits as revealed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Treatment of these protein bands with snake venom phosphodiesterase resulted in quantitative release of labeled 5'-AMP, respectively labeled with the corresponding isotope. Two-dimensional separation by isoelectric focusing and SDS-PAGE of labeled and native tubulin revealed that labeling occurs at least in four different isotubulins. The isoelectric point of the labeled isotubulins was slightly lower than that of native purified tubulin. This shift in mobility is probably due to additional negative charges involved with the incorporation of ADP-ribosyl residues into the tubulin subunits. SDS-PAGE of peptides derived from [32P]ADP-ribosylated alpha and beta tubulin subunits by Staphylococcus aureus protease cleavage showed a peptide pattern identical with that of native tubulin. Microtubule-associated proteins (MAP1 and MAP2) of high molecular weight were also shown to undergo ADP-ribosylation. Incubation of permeated rat neuroblastoma cells in the presence of [32P]NAD and cholera toxin results in the labeling of only a few cell proteins of which tubulin is one of the major substrates.

Full text

PDF
181

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amir-Zaltsman Y., Ezra E., Walker N., Lindner H. R., Salomon Y. Labeling of specific proteins in rat ovarian plasma membranes with [gamma-32 P]GTP. FEBS Lett. 1980 Dec 29;122(2):166–170. doi: 10.1016/0014-5793(80)80429-7. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Cassel D., Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2669–2673. doi: 10.1073/pnas.75.6.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  5. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  6. Gill D. M., Meren R. ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3050–3054. doi: 10.1073/pnas.75.7.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gozes I., Littauer U. Z. The alpha-subunit of tubulin is preferentially associated with brain presynaptic membrnae. FEBS Lett. 1979 Mar 1;99(1):86–90. doi: 10.1016/0014-5793(79)80255-0. [DOI] [PubMed] [Google Scholar]
  8. Gozes I., Littauer U. Z. Tubulin microheterogeneity increases with rat brain maturation. Nature. 1978 Nov 23;276(5686):411–413. doi: 10.1038/276411a0. [DOI] [PubMed] [Google Scholar]
  9. Gozes I., Saya D., Littauer U. Z. Tubulin microheterogeneity in neuroblastoma and glioma cell lines differs from that of the brain. Brain Res. 1979 Jul 27;171(1):171–175. doi: 10.1016/0006-8993(79)90746-7. [DOI] [PubMed] [Google Scholar]
  10. Hayaishi O., Ueda K. Poly(ADP-ribose) and ADP-ribosylation of proteins. Annu Rev Biochem. 1977;46:95–116. doi: 10.1146/annurev.bi.46.070177.000523. [DOI] [PubMed] [Google Scholar]
  11. Hilz H., Adamietz P., Bredehorst R., Wielckens K. ADP-ribosylation of nuclear proteins. Adv Enzyme Regul. 1978;17:195–211. doi: 10.1016/0065-2571(79)90014-1. [DOI] [PubMed] [Google Scholar]
  12. Hudson T. H., Johnson G. L. Peptide mapping of adenylate cyclase regulatory proteins that are cholera toxin substrates. J Biol Chem. 1980 Aug 10;255(15):7480–7486. [PubMed] [Google Scholar]
  13. Johnson G. L., Kaslow H. R., Bourne H. R. Genetic evidence that cholera toxin substrates are regulatory components of adenylate cyclase. J Biol Chem. 1978 Oct 25;253(20):7120–7123. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Mekalanos J. J., Collier R. J., Romig W. R. Enzymic activity of cholera toxin. I. New method of assay and the mechanism of ADP-ribosyl transfer. J Biol Chem. 1979 Jul 10;254(13):5849–5854. [PubMed] [Google Scholar]
  16. Miller M. R., Castellot J. J., Jr, Pardee A. B. A permeable animal cell preparation for studying macromolecular synthesis. DNA synthesis and the role of deoxyribonucleotides in S phase initiation. Biochemistry. 1978 Mar 21;17(6):1073–1080. doi: 10.1021/bi00599a021. [DOI] [PubMed] [Google Scholar]
  17. Moss J., Manganiello V. C., Vaughan M. Hydrolysis of nicotinamide adenine dinucleotide by choleragen and its A protomer: possible role in the activation of adenylate cyclase. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4424–4427. doi: 10.1073/pnas.73.12.4424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moss J., Vaughan M. Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3621–3624. doi: 10.1073/pnas.75.8.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Northup J. K., Sternweis P. C., Smigel M. D., Schleifer L. S., Ross E. M., Gilman A. G. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6516–6520. doi: 10.1073/pnas.77.11.6516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pappenheimer A. M., Jr Diphtheria toxin. Annu Rev Biochem. 1977;46:69–94. doi: 10.1146/annurev.bi.46.070177.000441. [DOI] [PubMed] [Google Scholar]
  21. Rendell M., Salomon Y., Lin M. C., Rodbell M., Berman M. The hepatic adenylate cyclase system. III. A mathematical model for the steady state kinetics of catalysis and nucleotide regulation. J Biol Chem. 1975 Jun 10;250(11):4253–4260. [PubMed] [Google Scholar]
  22. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Watkins P. A., Moss J., Vaughan M. Effects of GTP on choleragen-catalyzed ADP ribosylation of membrane and soluble proteins. J Biol Chem. 1980 May 10;255(9):3959–3963. [PubMed] [Google Scholar]
  24. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zisapel N., Littauer U. Z. Expression of external-surface membrane proteins in differentiated and undifferentiated mouse neuroblastoma cells. Eur J Biochem. 1979 Mar 15;95(1):51–59. doi: 10.1111/j.1432-1033.1979.tb12938.x. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES