Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1982;1(5):609–613. doi: 10.1002/j.1460-2075.1982.tb01216.x

Minimal set of ribosomal components for reconstitution of the peptidyltransferase activity.

H Schulze, K H Nierhaus
PMCID: PMC553095  PMID: 6765232

Abstract

A new approach is described to gain further information concerning the ribosomal components involved in the peptidyltransferase (PTF) activity exerted by Escherichia coli 50S subunits. A particle is reconstituted from highly purified proteins and RNA under modified incubation conditions. This particle contains only 16 out of the 34 distinct components constituting the native subunit, and yet still exhibits significant PTF activity. Single omission tests at the level of this "minimal ribosomal particle" indicate the limits set on a further reduction of the components, and in particular reveal that protein L18 can be excluded from the set of proteins which are essential for PTF activity, thus leaving L2, L3, L4, L15, and L16 as primary candidates for this function. 5S RNA is not needed for PTF activity of the "minimal ribosomal particle". Furthermore, a buffer condition is described which drastically improves the stability of total protein preparations and facilitates the isolation of individual proteins.

Full text

PDF
609

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auron P. E., Fahnestock S. R. Functional organization of the large ribosomal subunit of Bacillus stearothermophilus. J Biol Chem. 1981 Oct 10;256(19):10105–10110. [PubMed] [Google Scholar]
  2. Baxter R. M., White V. T., Zahid N. D. The modification of the peptidyltransferase activity of 50-S ribosomal subunits, LiCl-split proteins and L16 ribosomal protein by pyridoxal phosphate. Eur J Biochem. 1980 Sep;110(1):161–166. doi: 10.1111/j.1432-1033.1980.tb04851.x. [DOI] [PubMed] [Google Scholar]
  3. Baxter R. M., Zahid N. D. The modification of the peptidyl transferase activity of 50-S ribosomal subunits, LiC1-split proteins and L16 ribosomal protein by ethoxyformic anhydride. Eur J Biochem. 1978 Nov 2;91(1):49–56. doi: 10.1111/j.1432-1033.1978.tb20935.x. [DOI] [PubMed] [Google Scholar]
  4. Cerná J., Rychlík I. Phenylboric acids--a new group of peptidyl transferase inhibitors. FEBS Lett. 1980 Oct 6;119(2):343–348. doi: 10.1016/0014-5793(80)80285-7. [DOI] [PubMed] [Google Scholar]
  5. Cerná J., Rychlík I. Photoinactivation of peptidyl transferase binding sites. FEBS Lett. 1979 Jun 15;102(2):277–281. doi: 10.1016/0014-5793(79)80018-6. [DOI] [PubMed] [Google Scholar]
  6. Dohme F., Fahnestock S. R. Identification of proteins involved in the peptidyl transferase activity of ribosomes by chemical modification. J Mol Biol. 1979 Mar 25;129(1):63–81. doi: 10.1016/0022-2836(79)90060-3. [DOI] [PubMed] [Google Scholar]
  7. Dohme F., Nierhaus K. H. Role of 5S RNA in assembly and function of the 50S subunit from Escherichia coli. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2221–2225. doi: 10.1073/pnas.73.7.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fahnestock S., Neumann H., Shashoua V., Rich A. Ribosome-catalyzed ester formation. Biochemistry. 1970 Jun 9;9(12):2477–2483. doi: 10.1021/bi00814a013. [DOI] [PubMed] [Google Scholar]
  9. Gesteland R. F. Isolation and characterization of ribonuclease I mutants of Escherichia coli. J Mol Biol. 1966 Mar;16(1):67–84. doi: 10.1016/s0022-2836(66)80263-2. [DOI] [PubMed] [Google Scholar]
  10. Hampl H., Schulze H., Nierhaus K. H. Ribosomal components from Escherichia coli 50 S subunits involved in the reconstitution of peptidyltransferase activity. J Biol Chem. 1981 Mar 10;256(5):2284–2288. [PubMed] [Google Scholar]
  11. Maden B. E., Monro R. E. Ribosome-catalyzed peptidyl transfer. Effects of cations and pH value. Eur J Biochem. 1968 Nov;6(2):309–316. doi: 10.1111/j.1432-1033.1968.tb00450.x. [DOI] [PubMed] [Google Scholar]
  12. Monro R. E. Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli. J Mol Biol. 1967 May 28;26(1):147–151. doi: 10.1016/0022-2836(67)90271-9. [DOI] [PubMed] [Google Scholar]
  13. Nierhaus K. H., Dohme F. Total reconstitution of 50 S subunits from Escherichia coli ribosomes. Methods Enzymol. 1979;59:443–449. doi: 10.1016/0076-6879(79)59106-x. [DOI] [PubMed] [Google Scholar]
  14. Nowotny V., Nierhaus K. H. Protein L20 from the large subunit of Escherichia coli ribosomes is an assembly protein. J Mol Biol. 1980 Mar 15;137(4):391–399. doi: 10.1016/0022-2836(80)90164-3. [DOI] [PubMed] [Google Scholar]
  15. Nowotny V., Rheinberger H. J., Nierhaus K., Tesche B., Amils R. Preparation procedures of proteins and RNA influence the total reconstitution of 50S subunits from E. coli ribosomes. Nucleic Acids Res. 1980 Mar 11;8(5):989–998. doi: 10.1093/nar/8.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Röhl R., Nierhaus K. H. Assembly map of the large subunit (50S) of Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1982 Feb;79(3):729–733. doi: 10.1073/pnas.79.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spillmann S., Nierhaus K. H. The ribosomal protein L24 of Escherichia coli is an assembly protein. J Biol Chem. 1978 Oct 10;253(19):7047–7050. [PubMed] [Google Scholar]
  18. Wan K. K., Zahid N. D., Baxter R. M. The photochemical inactivation of peptidyl transferase activity. Eur J Biochem. 1975 Oct 15;58(2):397–402. doi: 10.1111/j.1432-1033.1975.tb02386.x. [DOI] [PubMed] [Google Scholar]
  19. Wystup G., Teraoka H., Schulze H., Hampl H., Nierhaus K. H. 50-S subunit from Escherichia coli ribosomes. Isolation of active ribosomal proteins and protein complexes. Eur J Biochem. 1979 Oct;100(1):101–113. doi: 10.1111/j.1432-1033.1979.tb02038.x. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES