Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Dec;87(24):10038–10042. doi: 10.1073/pnas.87.24.10038

Cryoglobulinemia induced by a murine IgG3 rheumatoid factor: skin vasculitis and glomerulonephritis arise from distinct pathogenic mechanisms.

L Reininger 1, T Berney 1, T Shibata 1, F Spertini 1, R Merino 1, S Izui 1
PMCID: PMC55310  PMID: 2263605

Abstract

MRL-lpr/lpr mice spontaneously develop a lupus-like syndrome characterized by immunopathological manifestations such as necrotizing vascular lesions of ear tips and severe glomerulonephritis. Similar skin vascular and glomerular lesions associated with cryoglobulinemia can be induced in normal mice by injection of a monoclonal antibody (mAb)--6-19 (gamma 3 heavy chain and kappa light chain), exhibiting both cryoglobulin and anti-IgG2a rheumatoid factor (RF) activities--derived from the MRL-lpr/lpr autoimmune mouse. To determine the role of RF and/or IgG3 Fc fragment-associated cryoglobulin activities in 6-19 mAb-induced tissue lesions, a 6-19-J558L hybrid mAb (gamma 3 heavy chain and lambda 1 light chain) was produced by fusion between the 6-19 hybridoma and the J558L myeloma. Here we report that the 6-19-J558L hybrid mAb, which loses the RF activity but retains the cryoglobulin activity, fails to induce skin vascular lesions. However, it is still able to provoke glomerular lesions identical to those caused by the 6-19 mAb. Further, we have observed that the depletion of the corresponding autoantigen, IgG2a, in mice by treatment with anti-IgM antisera from birth also prevents the development of skin but not glomerular lesions. Our results indicate that both RF and cryoglobulin activities of the 6-19 mAb are required for the development of skin vasculitis, but its cryoglobulin activity alone is sufficient to cause glomerular lesions. In addition, cDNA cloning and sequencing of the 6-19 mAb has revealed that the 6-19 kappa light chain variable region amino acid sequence is encoded in a germ-line configuration, suggesting that immunoglobulin variable region germ-line genes could contribute to the generation of pathogenic autoantibodies.

Full text

PDF
10038

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews B. S., Eisenberg R. A., Theofilopoulos A. N., Izui S., Wilson C. B., McConahey P. J., Murphy E. D., Roths J. B., Dixon F. J. Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med. 1978 Nov 1;148(5):1198–1215. doi: 10.1084/jem.148.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bazin H., Cormont F., De Clercq L. Purification of rat monoclonal antibodies. Methods Enzymol. 1986;121:638–652. doi: 10.1016/0076-6879(86)21063-0. [DOI] [PubMed] [Google Scholar]
  3. Brodeur P. H., Riblet R. The immunoglobulin heavy chain variable region (Igh-V) locus in the mouse. I. One hundred Igh-V genes comprise seven families of homologous genes. Eur J Immunol. 1984 Oct;14(10):922–930. doi: 10.1002/eji.1830141012. [DOI] [PubMed] [Google Scholar]
  4. Capra J. D., Kunkel H. G. Aggregation of gamma-G3 proteins: relevance to the hyperviscosity syndrome. J Clin Invest. 1970 Mar;49(3):610–621. doi: 10.1172/JCI106272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cerny A., Starobinski M., Hügin A. W., Sutter S., Zinkernagel R. M., Izui S. Treatment with high doses of anti-IgM prevents, but with lower doses accelerates autoimmune disease in (NZW x BXSB)F1 hybrid mice. J Immunol. 1987 Jun 15;138(12):4222–4228. [PubMed] [Google Scholar]
  6. Corbet S., Milili M., Fougereau M., Schiff C. Two V kappa germ-line genes related to the GAT idiotypic network (Ab1 and Ab3/Ab1') account for the major subfamilies of the mouse V kappa-1 variability subgroup. J Immunol. 1987 Feb 1;138(3):932–939. [PubMed] [Google Scholar]
  7. Eisenberg R. A., Thor L. T., Dixon F. J. Serum-serum interactions in autoimmune mice. Arthritis Rheum. 1979 Oct;22(10):1074–1081. doi: 10.1002/art.1780221005. [DOI] [PubMed] [Google Scholar]
  8. Grey H. M., Kohler P. F., Terry W. D., Franklin E. C. Human monoclonal gamma G-cryoglobulins with anti-gamma-globulin activity. J Clin Invest. 1968 Aug;47(8):1875–1884. doi: 10.1172/JCI105878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  10. Gyotoku Y., Abdelmoula M., Spertini F., Izui S., Lambert P. H. Cryoglobulinemia induced by monoclonal immunoglobulin G rheumatoid factors derived from autoimmune MRL/MpJ-lpr/lpr mice. J Immunol. 1987 Jun 1;138(11):3785–3792. [PubMed] [Google Scholar]
  11. Izui S., Eisenberg R. A. Circulating anti-DNA-rheumatoid factor complexes in MRL/1 mice. Clin Immunol Immunopathol. 1980 Mar;15(3):536–551. doi: 10.1016/0090-1229(80)90065-3. [DOI] [PubMed] [Google Scholar]
  12. Labit C., Pierres M. Rat monoclonal antibodies to mouse IgG1, IgG2a, IgG2b, and IgG3 subclasses, and kappa chain isotypic determinants. Hybridoma. 1984 Summer;3(2):163–169. doi: 10.1089/hyb.1984.3.163. [DOI] [PubMed] [Google Scholar]
  13. Lewis S., Rosenberg N., Alt F., Baltimore D. Continuing kappa-gene rearrangement in a cell line transformed by Abelson murine leukemia virus. Cell. 1982 Oct;30(3):807–816. doi: 10.1016/0092-8674(82)90285-9. [DOI] [PubMed] [Google Scholar]
  14. Luzuy S., Merino J., Engers H., Izui S., Lambert P. H. Autoimmunity after induction of neonatal tolerance to alloantigens: role of B cell chimerism and F1 donor B cell activation. J Immunol. 1986 Jun 15;136(12):4420–4426. [PubMed] [Google Scholar]
  15. Nose M., Okuda T., Gidlund M., Ramstedt U., Okada N., Okada H., Heyman B., Kyogoku M., Wigzell H. Mutant monoclonal antibodies with select alteration in complement activation ability. Impact on immune complex functions in vivo. J Immunol. 1988 Oct 1;141(7):2367–2373. [PubMed] [Google Scholar]
  16. Oi V. T., Morrison S. L., Herzenberg L. A., Berg P. Immunoglobulin gene expression in transformed lymphoid cells. Proc Natl Acad Sci U S A. 1983 Feb;80(3):825–829. doi: 10.1073/pnas.80.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reininger L., Ollier P., Poncet P., Kaushik A., Jaton J. C. Novel V genes encode virtually identical variable regions of six murine monoclonal anti-bromelain-treated red blood cell autoantibodies. J Immunol. 1987 Jan 1;138(1):316–323. [PubMed] [Google Scholar]
  18. Reth M., Imanishi-Kari T., Rajewsky K. Analysis of the repertoire of anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies in C 57 BL/6 mice by cell fusion. II. Characterization of idiotopes by monoclonal anti-idiotope antibodies. Eur J Immunol. 1979 Dec;9(12):1004–1013. doi: 10.1002/eji.1830091216. [DOI] [PubMed] [Google Scholar]
  19. Sakano H., Maki R., Kurosawa Y., Roeder W., Tonegawa S. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature. 1980 Aug 14;286(5774):676–683. doi: 10.1038/286676a0. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shlomchik M. J., Aucoin A. H., Pisetsky D. S., Weigert M. G. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9150–9154. doi: 10.1073/pnas.84.24.9150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shlomchik M. J., Marshak-Rothstein A., Wolfowicz C. B., Rothstein T. L., Weigert M. G. The role of clonal selection and somatic mutation in autoimmunity. 1987 Aug 27-Sep 2Nature. 328(6133):805–811. doi: 10.1038/328805a0. [DOI] [PubMed] [Google Scholar]
  23. Spertini F., Coulie P. G., Van Snick J., Davidson E., Lambert P. H., Izui S. Inhibition of cryoprecipitation of murine IgG3 anti-dinitrophenyl (DNP) monoclonal antibodies by anionic DNP-amino acid conjugates. Eur J Immunol. 1989 Feb;19(2):273–278. doi: 10.1002/eji.1830190209. [DOI] [PubMed] [Google Scholar]
  24. Spertini F., Donati Y., Welle I., Izui S., Lambert P. H. Prevention of murine cryoglobulinemia and associated pathology by monoclonal anti-idiotypic antibody. J Immunol. 1989 Oct 15;143(8):2508–2513. [PubMed] [Google Scholar]
  25. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
  26. Wolfowicz C. B., Sakorafas P., Rothstein T. L., Marshak-Rothstein A. Oligoclonality of rheumatoid factors arising spontaneously in lpr/lpr mice. Clin Immunol Immunopathol. 1988 Mar;46(3):382–395. doi: 10.1016/0090-1229(88)90057-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES