Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1982;1(11):1423–1428. doi: 10.1002/j.1460-2075.1982.tb01333.x

The grid sectioning technique: a study of catalase platelets.

J C Jésior
PMCID: PMC553227  PMID: 7188250

Abstract

The grid sectioning technique has been used to obtain the two missing principal axis projections of orthorhombic catalase platelets and to measure directly the unit cell c-value. The negatively stained platelets have a unit cell c-dimension of half that proposed by Unwin (1975) from powder X-ray diffraction. The precision of the grid sectioning technique in positioning sections along a specimen axis shows that the growth fault lines usually observed on negatively stained catalase platelets are rows of missing molecules filled with stain. From these sections conclusions are drawn concerning the action of negative stain on a specimen, the microtomy process, and the specimen/supporting film interaction. Finally the value of microtomy for detailed structural analysis of biological objects is emphasized.

Full text

PDF
1423

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akey C. W., Moffat K., Wharton D. C., Edelstein S. J. Characterization of crystals of a cytochrome oxidase (nitrite reductase) from Pseudomonas aeruginosa by x-ray diffraction and electron microscopy. J Mol Biol. 1980 Jan 5;136(1):19–43. doi: 10.1016/0022-2836(80)90364-2. [DOI] [PubMed] [Google Scholar]
  2. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  3. Jésior J. C. A new approach for the visualization of molecular arrangement in biological micro-crystals. Ultramicroscopy. 1982;8(4):379–384. doi: 10.1016/0304-3991(82)90060-2. [DOI] [PubMed] [Google Scholar]
  4. Kellenberger E., Häner M., Wurtz M. The wrapping phenomenon in air-dried and negatively stained preparations. Ultramicroscopy. 1982;9(1-2):139–150. doi: 10.1016/0304-3991(82)90236-4. [DOI] [PubMed] [Google Scholar]
  5. Kirschner D. A., Hollingshead C. J. Processing for electron microscopy alters membrane structure and packing in myelin. J Ultrastruct Res. 1980 Nov;73(2):211–232. doi: 10.1016/s0022-5320(80)90125-2. [DOI] [PubMed] [Google Scholar]
  6. Lange R. H., Blödorn J., Magdowski G., Trampisch H. J. Crystalline preparations of rhombohedral porcine insulin as studied by electron diffraction. J Ultrastruct Res. 1979 Jul;68(1):81–91. doi: 10.1016/s0022-5320(79)90144-8. [DOI] [PubMed] [Google Scholar]
  7. Lange R. H. The lipoprotein crystals of cyclostome yolk platelets (Myxine glutinosa L., Lampetra planeri [Bloch], L. fluviatilis [L.]). J Ultrastruct Res. 1982 Apr;79(1):1–17. doi: 10.1016/s0022-5320(82)90048-x. [DOI] [PubMed] [Google Scholar]
  8. Langer R., Poppe Ch, Schramm H. J., Hoppe W. Electron microscopy of thin protein crystal sections. J Mol Biol. 1975 Apr 5;93(2):159–165. doi: 10.1016/0022-2836(75)90125-4. [DOI] [PubMed] [Google Scholar]
  9. McPherson A., Jr, Rich A. Crystallographic study of beef liver catalase. Arch Biochem Biophys. 1973 Jul;157(1):23–27. doi: 10.1016/0003-9861(73)90384-6. [DOI] [PubMed] [Google Scholar]
  10. Murthy M. R., Reid T. J., 3rd, Sicignano A., Tanaka N., Rossmann M. G. Structure of beef liver catalase. J Mol Biol. 1981 Oct 25;152(2):465–499. doi: 10.1016/0022-2836(81)90254-0. [DOI] [PubMed] [Google Scholar]
  11. Reid T. J., 3rd, Murthy M. R., Sicignano A., Tanaka N., Musick W. D., Rossmann M. G. Structure and heme environment of beef liver catalase at 2.5 A resolution. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4767–4771. doi: 10.1073/pnas.78.8.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Squire J., Edman A. C., Freundlich A., Harford J., Sjöström M. Muscle structure, cryo-methods and image analysis. J Microsc. 1982 Feb;125(Pt 2):215–225. doi: 10.1111/j.1365-2818.1982.tb00340.x. [DOI] [PubMed] [Google Scholar]
  13. Unwin P. N. Beef liver catalase structure: interpretation of electron micrographs. J Mol Biol. 1975 Oct 15;98(1):235–242. doi: 10.1016/s0022-2836(75)80111-2. [DOI] [PubMed] [Google Scholar]
  14. Unwin P. N. Electron microscopy of the stacked disk aggregate of tobacco mosaic virus protein. II. The influence of electron irradiation of the stain distribution. J Mol Biol. 1974 Aug 25;87(4):657–670. doi: 10.1016/0022-2836(74)90076-x. [DOI] [PubMed] [Google Scholar]
  15. Wrigley N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. doi: 10.1016/s0022-5320(68)80048-6. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES