Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1987 Mar;6(3):555–560. doi: 10.1002/j.1460-2075.1987.tb04790.x

Thyroglobulin, the major and obligatory exportable protein of thyroid follicle cells, carries the lysosomal recognition marker mannose-6-phosphate.

V Herzog, W Neumüller, B Holzmann
PMCID: PMC553433  PMID: 3582367

Abstract

Thyroglobulin (TG), the major exportable protein of thyroid follicle cells, is conveyed to lysosomes on a complex secretion, storage and recapture pathway by as yet unknown transport mechanisms. This report establishes that the dimeric porcine TG-molecule carries an average of six phosphate residues. Endoglycosidase digestion showed that two phosphate residues are bound to the high-mannose carbohydrate side chains (CHO), while two others are linked to the complex CHO. These four residues are also sensitive to alkaline phosphatase treatment, indicating their terminal linkage. Immunoprecipitation analyses showed that TG obtained from microsomal fractions is already phosphorylated. Most important, an enzymatic assay applied to hydrolysates of TG established that the two phosphate residues at the high mannose CHO are present as mannose-6-phosphate (M-6-P). Alkaline phosphatase treatment of biosynthetically radiophosphorylated CHO followed by hydrolysis and t.l.c. indicated that M-6-P is present at least in part in phosphomonoester linkage. Furthermore, porcine TG binds specifically to the M-6-P receptor of Chinese hamster ovary cells. It is concluded that the M-6-P residues of TG are exposed and able to operate as a ligand for the M-6-P receptor. It is unknown why the lysosomal recognition-marker M-6-P does not convey TG directly on an intracellular route to lysosomes. We propose that for the secretion of newly synthesized TG into the follicle lumen an additional export signal dominating over the M-6-P recognition-marker is required.

Full text

PDF
555

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandley B. K., Schnaar R. L. Phosphorylation of extracellular carbohydrates by intact cells. Chicken hepatocytes specifically adhere to and phosphorylate immobilized N-acetylglucosamine. J Biol Chem. 1985 Oct 15;260(23):12474–12483. [PubMed] [Google Scholar]
  2. EDELHOCH H. THE STRUCTURE OF THYROGLOBULIN AND ITS ROLE IN IODINATION. Recent Prog Horm Res. 1965;21:1–31. [PubMed] [Google Scholar]
  3. Ekholm R., Wollman S. H. Site of iodination in the rat thyroid gland deduced from electron microscopic autoradiographs. Endocrinology. 1975 Dec;97(6):1432–1444. doi: 10.1210/endo-97-6-1432. [DOI] [PubMed] [Google Scholar]
  4. GOTTSCHALK A., ADA G. L. The separation and quantitative determination of the component sugars of mucoproteins. Biochem J. 1956 Apr;62(4):681–686. doi: 10.1042/bj0620681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  6. Hasilik A., Klein U., Waheed A., Strecker G., von Figura K. Phosphorylated oligosaccharides in lysosomal enzymes: identification of alpha-N-acetylglucosamine(1)phospho(6)mannose diester groups. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7074–7078. doi: 10.1073/pnas.77.12.7074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hayden L. J., Shagrin J. M., Young J. A. Micropuncture investigation of the anion content of colloid from single rat thyroid follicles. A micromethod for the simultaneous determination of iodide and chloride in nanomole quantities. Pflugers Arch. 1970;321(2):173–186. doi: 10.1007/BF00586371. [DOI] [PubMed] [Google Scholar]
  8. Herzog V., Miller F. Structural and functional polarity of inside-out follicles prepared from pig thyroid gland. Eur J Cell Biol. 1981 Apr;24(1):74–84. [PubMed] [Google Scholar]
  9. Herzog V., Miller F. The localization of endogenous peroxidase in the lacrimal gland of the rat during postnatal development. Electron microscope cytochemical and biochemical studies. J Cell Biol. 1972 Jun;53(3):662–680. doi: 10.1083/jcb.53.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herzog V. Secretion of sulfated thyroglobulin. Eur J Cell Biol. 1986 Jan;39(2):399–409. [PubMed] [Google Scholar]
  11. Herzog V. Transcytosis in thyroid follicle cells. J Cell Biol. 1983 Sep;97(3):607–617. doi: 10.1083/jcb.97.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holzmann B., Johnson J. P., Kaudewitz P., Riethmüller G. In situ analysis of antigens on malignant and benign cells of the melanocyte lineage. Differential expression of two surface molecules, gp75 and p89. J Exp Med. 1985 Feb 1;161(2):366–377. doi: 10.1084/jem.161.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huttner W. B. Determination and occurrence of tyrosine O-sulfate in proteins. Methods Enzymol. 1984;107:200–223. doi: 10.1016/0076-6879(84)07013-0. [DOI] [PubMed] [Google Scholar]
  14. Huttner W. B. Sulphation of tyrosine residues-a widespread modification of proteins. Nature. 1982 Sep 16;299(5880):273–276. doi: 10.1038/299273a0. [DOI] [PubMed] [Google Scholar]
  15. Kaplan A., Achord D. T., Sly W. S. Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc Natl Acad Sci U S A. 1977 May;74(5):2026–2030. doi: 10.1073/pnas.74.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Martensen T. M. Phosphotyrosine in proteins. Stability and quantification. J Biol Chem. 1982 Aug 25;257(16):9648–9652. [PubMed] [Google Scholar]
  18. Monaco F., Robbins J. Defective thyroglobulin synthesis in an experimental rat thyroid tumor. Lack of membrane-bound sialyltransferase activity. J Biol Chem. 1973 Apr 10;248(7):2328–2336. [PubMed] [Google Scholar]
  19. Muramatsu T., Koide N., Ceccarini C., Atkinson P. H. Characterization of mannose-labeled glycopeptides from human diploid cells and their growth-dependent alterations. J Biol Chem. 1976 Aug 10;251(15):4673–4679. [PubMed] [Google Scholar]
  20. Muramatsu T., Koide N., Maeyama K. Further studies on endo-beta-N-acetylglucosaminidase D1. J Biochem. 1978 Feb;83(2):363–370. doi: 10.1093/oxfordjournals.jbchem.a131922. [DOI] [PubMed] [Google Scholar]
  21. Natowicz M., Hallett D. W., Frier C., Chi M., Schlesinger P. H., Baenziger J. U. Recognition and receptor-mediated uptake of phosphorylated high mannose-type oligosaccharides by cultured human fibroblasts. J Cell Biol. 1983 Mar;96(3):915–919. doi: 10.1083/jcb.96.3.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rolland M., Lissitzky S. Endogenous proteolytic activity and constituent polypeptide chains of sheep and pig 19 S thyroglobulin. Biochim Biophys Acta. 1976 Apr 14;427(2):696–707. doi: 10.1016/0005-2795(76)90213-0. [DOI] [PubMed] [Google Scholar]
  23. Sahagian G. G., Neufeld E. F. Biosynthesis and turnover of the mannose 6-phosphate receptor in cultured Chinese hamster ovary cells. J Biol Chem. 1983 Jun 10;258(11):7121–7128. [PubMed] [Google Scholar]
  24. Smeds S. A microgel electrophoretic analysis of the colloid proteins in single rat thyroid follicles. II. The protein concentration of the colloid single rat thyroid follicles. Endocrinology. 1972 Nov;91(5):1300–1306. doi: 10.1210/endo-91-5-1300. [DOI] [PubMed] [Google Scholar]
  25. Spiro M. J., Gorski K. M. Studies on the posttranslational migration and processing of thyroglobulin: use of inhibitors and evaluation of the role of phosphorylation. Endocrinology. 1986 Sep;119(3):1146–1158. doi: 10.1210/endo-119-3-1146. [DOI] [PubMed] [Google Scholar]
  26. Spiro R. G., Spiro M. J. Glycoprotein biosynthesis: studies on thyroglobulin. Characterization of a particulate precursor and radioisotope incorporation by thyroid slices and particle systems. J Biol Chem. 1966 Mar 25;241(6):1271–1282. [PubMed] [Google Scholar]
  27. Tsuji T., Yamamoto K., Irimura T., Osawa T. Structure of carbohydrate unit A or porcine thyroglobulin. Biochem J. 1981 Jun 1;195(3):691–699. doi: 10.1042/bj1950691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Van Herle A. J., Vassart G., Dumont J. E. Control of thyroglobulin synthesis and secretion (second of two parts). N Engl J Med. 1979 Aug 9;301(6):307–314. doi: 10.1056/NEJM197908093010605. [DOI] [PubMed] [Google Scholar]
  29. Widnell C. C. Purification of rat liver 5'-nucleotidase as a complex with sphingomyelin. Methods Enzymol. 1974;32:368–374. doi: 10.1016/0076-6879(74)32037-x. [DOI] [PubMed] [Google Scholar]
  30. Yamamoto K., Tsuji T., Irimura T., Osawa T. The structure of carbohydrate unit B of porcine thyroglobulin. Biochem J. 1981 Jun 1;195(3):701–713. doi: 10.1042/bj1950701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yamamoto K., Tsuji T., Tarutani O., Osawa T. Phosphorylated high mannose-type and hybrid-type oligosaccharide chains of human thyroglobulin isolated from malignant thyroid tissue. Biochim Biophys Acta. 1985 Jan 28;838(1):84–91. doi: 10.1016/0304-4165(85)90253-3. [DOI] [PubMed] [Google Scholar]
  32. von Figura K., Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem. 1986;55:167–193. doi: 10.1146/annurev.bi.55.070186.001123. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES