Abstract
We have studied the effect of gamma-aminobutyric acid (GABA) and other GABA-receptor agonists (3-aminopropanesulphonic acid and muscimol) on the noradrenaline-induced stimulation of polyphosphoinositide metabolism in rat hippocampal slices. Formation of water-soluble inositol phosphates, and polyphosphoinositide metabolism were studied in hippocampal slices prelabelled with [3H]myoinositol. Noradrenaline induced formation of inositol mono-, bis- and trisphosphate during 10 min incubation in the presence of lithium; activation of phospholipase C by noradrenaline was also reflected by the hydrolysis of polyphosphoinositides and by the increased metabolism of phosphatidylinositol. GABA-receptor agonists were unable to activate per se phospholipase C; however, when added together with a low concentration of noradrenaline, they greatly potentiated the noradrenaline-stimulated polyphosphoinositide metabolism. We conclude that GABA-receptor agonists potentiate the effect of noradrenaline on polyphosphoinositide turnover and we discuss the role of this neurotransmitter interaction in the physiology of the hippocampus.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akers R. F., Lovinger D. M., Colley P. A., Linden D. J., Routtenberg A. Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science. 1986 Feb 7;231(4738):587–589. doi: 10.1126/science.3003904. [DOI] [PubMed] [Google Scholar]
- Baudry M., Evans J., Lynch G. Excitatory amino acids inhibit stimulation of phosphatidylinositol metabolism by aminergic agonists in hippocampus. Nature. 1986 Jan 23;319(6051):329–331. doi: 10.1038/319329a0. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
- Berridge M. Second messenger dualism in neuromodulation and memory. 1986 Sep 25-Oct 1Nature. 323(6086):294–295. doi: 10.1038/323294a0. [DOI] [PubMed] [Google Scholar]
- Blaxter T. J., Carlen P. L., Davies M. F., Kujtan P. W. gamma-Aminobutyric acid hyperpolarizes rat hippocampal pyramidal cells through a calcium-dependent potassium conductance. J Physiol. 1986 Apr;373:181–194. doi: 10.1113/jphysiol.1986.sp016041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corradetti R., Moneti G., Moroni F., Pepeu G., Wieraszko A. Electrical stimulation of the stratum radiatum increases the release and neosynthesis of aspartate, glutamate, and gamma-aminobutyric acid in rat hippocampal slices. J Neurochem. 1983 Dec;41(6):1518–1525. doi: 10.1111/j.1471-4159.1983.tb00858.x. [DOI] [PubMed] [Google Scholar]
- Hokin L. E. Receptors and phosphoinositide-generated second messengers. Annu Rev Biochem. 1985;54:205–235. doi: 10.1146/annurev.bi.54.070185.001225. [DOI] [PubMed] [Google Scholar]
- Karbon E. W., Duman R. S., Enna S. J. GABAB receptors and norepinephrine-stimulated cAMP production in rat brain cortex. Brain Res. 1984 Jul 23;306(1-2):327–332. doi: 10.1016/0006-8993(84)90382-2. [DOI] [PubMed] [Google Scholar]
- Kemp J. A., Marshall G. R., Woodruff G. N. Quantitative evaluation of the potencies of GABA-receptor agonists and antagonists using the rat hippocampal slice preparation. Br J Pharmacol. 1986 Apr;87(4):677–684. doi: 10.1111/j.1476-5381.1986.tb14585.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lapetina E. G., Reep B., Watson S. P. Ionophore A23187 stimulates phosphorylation of the 40,000 dalton protein in human platelets without phospholipase C activation. Life Sci. 1986 Aug 25;39(8):751–759. doi: 10.1016/0024-3205(86)90024-x. [DOI] [PubMed] [Google Scholar]
- Lapetina E. G., Silió J., Ruggiero M. Thrombin induces serotonin secretion and aggregation independently of inositol phospholipids hydrolysis and protein phosphorylation in human platelets permeabilized with saponin. J Biol Chem. 1985 Jun 10;260(11):7078–7083. [PubMed] [Google Scholar]
- Madison D. V., Nicoll R. A. Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. J Physiol. 1986 Mar;372:221–244. doi: 10.1113/jphysiol.1986.sp016006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madison D. V., Nicoll R. A. Cyclic adenosine 3',5'-monophosphate mediates beta-receptor actions of noradrenaline in rat hippocampal pyramidal cells. J Physiol. 1986 Mar;372:245–259. doi: 10.1113/jphysiol.1986.sp016007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majerus P. W., Neufeld E. J., Wilson D. B. Production of phosphoinositide-derived messengers. Cell. 1984 Jul;37(3):701–703. doi: 10.1016/0092-8674(84)90405-7. [DOI] [PubMed] [Google Scholar]
- Malenka R. C., Madison D. V., Nicoll R. A. Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature. 1986 May 8;321(6066):175–177. doi: 10.1038/321175a0. [DOI] [PubMed] [Google Scholar]
- Molina y Vedia L. M., Lapetina E. G. Phorbol 12,13-dibutyrate and 1-oleyl-2-acetyldiacylglycerol stimulate inositol trisphosphate dephosphorylation in human platelets. J Biol Chem. 1986 Aug 15;261(23):10493–10495. [PubMed] [Google Scholar]
- Mueller A. L., Kirk K. L., Hoffer B. J., Dunwiddie T. V. Noradrenergic responses in rat hippocampus: electrophysiological actions of direct- and indirect-acting sympathomimetics in the in vitro slice. J Pharmacol Exp Ther. 1982 Dec;223(3):599–605. [PubMed] [Google Scholar]
- Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
- Raval P. J., Allan D. Ca2+-induced polyphosphoinositide breakdown due to phosphomonoesterase activity in chicken erythrocytes. Biochem J. 1985 Oct 1;231(1):179–183. doi: 10.1042/bj2310179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riveros N., Orrego F. N-methylaspartate-activated calcium channels in rat brain cortex slices. Effect of calcium channel blockers and of inhibitory and depressant substances. Neuroscience. 1986 Mar;17(3):541–546. doi: 10.1016/0306-4522(86)90029-1. [DOI] [PubMed] [Google Scholar]
- Stanton P. K., Sarvey J. M. Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate gyrus of rat hippocampal slices. J Neurosci. 1985 Aug;5(8):2169–2176. doi: 10.1523/JNEUROSCI.05-08-02169.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teyler T. J., Discenna P. Long-term potentiation as a candidate mnemonic device. Brain Res. 1984 Mar;319(1):15–28. doi: 10.1016/0165-0173(84)90027-4. [DOI] [PubMed] [Google Scholar]
- Wolf M., LeVine H., 3rd, May W. S., Jr, Cuatrecasas P., Sahyoun N. A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters. Nature. 1985 Oct 10;317(6037):546–549. doi: 10.1038/317546a0. [DOI] [PubMed] [Google Scholar]
- Yeh H. H., Moises H. C., Waterhouse B. D., Woodward D. J. Modulatory interactions between norepinephrine and taurine, beta-alanine, gamma-aminobutyric acid and muscimol, applied iontophoretically to cerebellar Purkinje cells. Neuropharmacology. 1981 Jun;20(6):549–560. doi: 10.1016/0028-3908(81)90207-0. [DOI] [PubMed] [Google Scholar]

