Abstract
The radius of gyration of human plasma fibronectin was determined by light scattering both under conditions in which the molecule is in an extended conformation (ionic strength 1.01 M, pH 8) and close to its native, more compact conformation (ionic strength 0.16 M, pH 8). These values were found to be 17.5 +/- 0.8 nm and 10.7 +/- 0.9 nm respectively, for a constant mol. wt of 533,000 +/- 8000, in excellent agreement with the value of 520,000 deduced from its known composition. A set of models, each made of two identical, end-to-end joined chains of 28 beads, was then constructed, and their calculated physico-chemical parameters were compared with those available for the whole fibronectin molecule and for some of its proteolytic fragments in both conformations. Two possible models for the circulating form are presented here: in both, the fibronectin molecule is in a compact, tangled conformation, with the amino-terminal end of one chain folded over to the carboxy end of itself or of the other chain either in a hairpin or in a circular fashion. With the exception of the carboxy-terminal fibrin(ogen)-binding domains, all the domains appear to be well exposed to the solvent, and thus free to interact with potential ligands.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander S. S., Jr, Colonna G., Edelhoch H. The structure and stability of human plasma cold-insoluble globulin. J Biol Chem. 1979 Mar 10;254(5):1501–1505. [PubMed] [Google Scholar]
- Ankel E. G., Homandberg G., Tooney N. M., Lai C. S. Heparin modulates conformational states of plasma fibronectin: an electron spin resonance spin label approach. Arch Biochem Biophys. 1986 Jan;244(1):50–56. doi: 10.1016/0003-9861(86)90093-7. [DOI] [PubMed] [Google Scholar]
- Bernard B. A., Yamada K. M., Olden K. Carbohydrates selectively protect a specific domain of fibronectin against proteases. J Biol Chem. 1982 Jul 25;257(14):8549–8554. [PubMed] [Google Scholar]
- Calaycay J., Pande H., Lee T., Borsi L., Siri A., Shively J. E., Zardi L. Primary structure of a DNA- and heparin-binding domain (Domain III) in human plasma fibronectin. J Biol Chem. 1985 Oct 5;260(22):12136–12141. [PubMed] [Google Scholar]
- Carr M. E., Jr, Hermans J. Size and density of fibrin fibers from turbidity. Macromolecules. 1978 Jan-Feb;11(1):46–50. doi: 10.1021/ma60061a009. [DOI] [PubMed] [Google Scholar]
- Doolittle R. F. Fibrinogen and fibrin. Annu Rev Biochem. 1984;53:195–229. doi: 10.1146/annurev.bi.53.070184.001211. [DOI] [PubMed] [Google Scholar]
- Ehrismann R., Chiquet M., Turner D. C. Mode of action of fibronectin in promoting chicken myoblast attachment. Mr = 60,000 gelatin-binding fragment binds native fibronectin. J Biol Chem. 1981 Apr 25;256(8):4056–4062. [PubMed] [Google Scholar]
- Ehrismann R., Roth D. E., Eppenberger H. M., Turner D. C. Arrangement of attachment-promoting, self-association, and heparin-binding sites in horse serum fibronectin. J Biol Chem. 1982 Jul 10;257(13):7381–7387. [PubMed] [Google Scholar]
- Engel J., Odermatt E., Engel A., Madri J. A., Furthmayr H., Rohde H., Timpl R. Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J Mol Biol. 1981 Jul 25;150(1):97–120. doi: 10.1016/0022-2836(81)90326-0. [DOI] [PubMed] [Google Scholar]
- Engvall E., Ruoslahti E., Miller E. J. Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J Exp Med. 1978 Jun 1;147(6):1584–1595. doi: 10.1084/jem.147.6.1584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson H. P., Carrell N. A. Fibronectin in extended and compact conformations. Electron microscopy and sedimentation analysis. J Biol Chem. 1983 Dec 10;258(23):14539–14544. [PubMed] [Google Scholar]
- Erickson H. P., Carrell N., McDonagh J. Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand. J Cell Biol. 1981 Dec;91(3 Pt 1):673–678. doi: 10.1083/jcb.91.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forastieri H., Ingham K. C. Interaction of gelatin with a fluorescein-labeled 42-kDa chymotryptic fragment of fibronectin. J Biol Chem. 1985 Sep 5;260(19):10546–10550. [PubMed] [Google Scholar]
- Hantgan R. R., Hermans J. Assembly of fibrin. A light scattering study. J Biol Chem. 1979 Nov 25;254(22):11272–11281. [PubMed] [Google Scholar]
- Homandberg G. A., Erickson J. W. Model of fibronectin tertiary structure based on studies of interactions between fragments. Biochemistry. 1986 Nov 4;25(22):6917–6925. doi: 10.1021/bi00370a027. [DOI] [PubMed] [Google Scholar]
- Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hörmann H. Fibronectin--mediator between cells and connective tissue. Klin Wochenschr. 1982 Oct 15;60(20):1265–1277. doi: 10.1007/BF01727483. [DOI] [PubMed] [Google Scholar]
- Hörmann H., Richter H. Models for the subunit arrangement in soluble and aggregated plasma fibronectin. Biopolymers. 1986 May;25(5):947–958. doi: 10.1002/bip.360250513. [DOI] [PubMed] [Google Scholar]
- Kornblihtt A. R., Umezawa K., Vibe-Pedersen K., Baralle F. E. Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J. 1985 Jul;4(7):1755–1759. doi: 10.1002/j.1460-2075.1985.tb03847.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornblihtt A. R., Vibe-Pedersen K., Baralle F. E. Human fibronectin: cell specific alternative mRNA splicing generates polypeptide chains differing in the number of internal repeats. Nucleic Acids Res. 1984 Jul 25;12(14):5853–5868. doi: 10.1093/nar/12.14.5853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornblihtt A. R., Vibe-Pedersen K., Baralle F. E. Isolation and characterization of cDNA clones for human and bovine fibronectins. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3218–3222. doi: 10.1073/pnas.80.11.3218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koteliansky V. E., Bejanian M. V., Smirnov V. N. Electron microscopy study of fibronectin structure. FEBS Lett. 1980 Nov 3;120(2):283–286. doi: 10.1016/0014-5793(80)80317-6. [DOI] [PubMed] [Google Scholar]
- Koteliansky V. E., Glukhova M. A., Bejanian M. V., Smirnov V. N., Filimonov V. V., Zalite O. M., Venyaminov SYu A study of the structure of fibronectin. Eur J Biochem. 1981 Oct;119(3):619–624. doi: 10.1111/j.1432-1033.1981.tb05652.x. [DOI] [PubMed] [Google Scholar]
- Krusius T., Fukuda M., Dell A., Ruoslahti E. Structure of the carbohydrate units of human amniotic fluid fibronectin. J Biol Chem. 1985 Apr 10;260(7):4110–4116. [PubMed] [Google Scholar]
- Kuntz I. D., Jr, Kauzmann W. Hydration of proteins and polypeptides. Adv Protein Chem. 1974;28:239–345. doi: 10.1016/s0065-3233(08)60232-6. [DOI] [PubMed] [Google Scholar]
- Lai C. S., Tooney N. M., Ankel E. G. Structure and flexibility of plasma fibronectin in solution: electron spin resonance spin-label, circular dichroism, and sedimentation studies. Biochemistry. 1984 Dec 18;23(26):6393–6397. doi: 10.1021/bi00321a017. [DOI] [PubMed] [Google Scholar]
- Ledger P. W., Tanzer M. L. The phosphate content of human fibronectin. J Biol Chem. 1982 Apr 10;257(7):3890–3895. [PubMed] [Google Scholar]
- Marković Z., Lustig A., Engel J., Richter H., Hörmann H. Shape and stability of fibronectin in solutions of different pH and ionic strength. Hoppe Seylers Z Physiol Chem. 1983 Dec;364(12):1795–1804. doi: 10.1515/bchm2.1983.364.2.1795. [DOI] [PubMed] [Google Scholar]
- Mosesson M. W., Chen A. B., Huseby R. M. The cold-insoluble globulin of human plasma: studies of its essential structural features. Biochim Biophys Acta. 1975 Apr 29;386(2):509–524. doi: 10.1016/0005-2795(75)90294-9. [DOI] [PubMed] [Google Scholar]
- Mosesson M. W., Umfleet R. A. The cold-insoluble globulin of human plasma. I. Purification, primary characterization, and relationship to fibrinogen and other cold-insoluble fraction components. J Biol Chem. 1970 Nov 10;245(21):5728–5736. [PubMed] [Google Scholar]
- Odermatt E., Engle J., Richter H., Hörmann H. Shape, conformation and stability of fibronectin fragments determined by electron microscopy, circular dichroism and ultracentrifugation. J Mol Biol. 1982 Jul 25;159(1):109–123. doi: 10.1016/0022-2836(82)90034-1. [DOI] [PubMed] [Google Scholar]
- Odermatt E., Tamkun J. W., Hynes R. O. Repeating modular structure of the fibronectin gene: relationship to protein structure and subunit variation. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6571–6575. doi: 10.1073/pnas.82.19.6571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osterlund E., Eronen I., Osterlund K., Vuento M. Secondary structure of human plasma fibronectin: conformational change induced by calf alveolar heparan sulfates. Biochemistry. 1985 May 21;24(11):2661–2667. doi: 10.1021/bi00332a011. [DOI] [PubMed] [Google Scholar]
- Pande H., Calaycay J., Hawke D., Ben-Avram C. M., Shively J. E. Primary structure of a glycosylated DNA-binding domain in human plasma fibronectin. J Biol Chem. 1985 Feb 25;260(4):2301–2306. [PubMed] [Google Scholar]
- Petersen T. E., Thøgersen H. C., Skorstengaard K., Vibe-Pedersen K., Sahl P., Sottrup-Jensen L., Magnusson S. Partial primary structure of bovine plasma fibronectin: three types of internal homology. Proc Natl Acad Sci U S A. 1983 Jan;80(1):137–141. doi: 10.1073/pnas.80.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price T. M., Rudee M. L., Pierschbacher M., Ruoslahti E. Structure of fibronectin and its fragments in electron microscopy. Eur J Biochem. 1982 Dec 15;129(2):359–363. doi: 10.1111/j.1432-1033.1982.tb07058.x. [DOI] [PubMed] [Google Scholar]
- Rocco M., Aresu O., Zardi L. Conformational state of circulating human plasma fibronectin. FEBS Lett. 1984 Dec 10;178(2):327–330. doi: 10.1016/0014-5793(84)80627-4. [DOI] [PubMed] [Google Scholar]
- Rocco M., Carson M., Hantgan R., McDonagh J., Hermans J. Dependence of the shape of the plasma fibronectin molecule on solvent composition. Ionic strength and glycerol content. J Biol Chem. 1983 Dec 10;258(23):14545–14549. [PubMed] [Google Scholar]
- Teller D. C., Swanson E., de Haën C. The translational friction coefficient of proteins. Methods Enzymol. 1979;61:103–124. doi: 10.1016/0076-6879(79)61010-8. [DOI] [PubMed] [Google Scholar]
- Tooney N. M., Mosesson M. W., Amrani D. L., Hainfeld J. F., Wall J. S. Solution and surface effects on plasma fibronectin structure. J Cell Biol. 1983 Dec;97(6):1686–1692. doi: 10.1083/jcb.97.6.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venyaminov SYu, Metsis M. L., Chernousov M. A., Koteliansky V. E. Distribution of secondary structure along the fibronectin molecule. Eur J Biochem. 1983 Oct 3;135(3):485–489. doi: 10.1111/j.1432-1033.1983.tb07677.x. [DOI] [PubMed] [Google Scholar]
- Vuento M., Vartio T., Saraste M., von Bonsdorff C. H., Vaheri A. Spontaneous and polyamine-induced formation of filamentous polymers from soluble fibronectin. Eur J Biochem. 1980 Mar;105(1):33–42. doi: 10.1111/j.1432-1033.1980.tb04471.x. [DOI] [PubMed] [Google Scholar]
- Williams E. C., Janmey P. A., Ferry J. D., Mosher D. F. Conformational states of fibronectin. Effects of pH, ionic strength, and collagen binding. J Biol Chem. 1982 Dec 25;257(24):14973–14978. [PubMed] [Google Scholar]
- Yamada K. M. Cell surface interactions with extracellular materials. Annu Rev Biochem. 1983;52:761–799. doi: 10.1146/annurev.bi.52.070183.003553. [DOI] [PubMed] [Google Scholar]
- Zardi L., Siri A., Carnemolla B., Cosulich E., Viale G., Santi L. A simplified procedure for the preparation of antibodies to serum fibronectin. J Immunol Methods. 1980;34(2):155–165. doi: 10.1016/0022-1759(80)90169-6. [DOI] [PubMed] [Google Scholar]
- Zardi L., Siri A., Carnemolla B., Santi L., Gardner W. D., Hoch S. O. Fibronectin: a chromatin-associated protein? Cell. 1979 Nov;18(3):649–657. doi: 10.1016/0092-8674(79)90120-x. [DOI] [PubMed] [Google Scholar]