Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1987 Oct;6(10):3125–3131. doi: 10.1002/j.1460-2075.1987.tb02622.x

Restoration of u.v.-induced excision repair in Xeroderma D cells transfected with the denV gene of bacteriophage T4.

J E Arrand 1, S Squires 1, N M Bone 1, R T Johnson 1
PMCID: PMC553753  PMID: 3319581

Abstract

The heritable DNA repair defect in human Xeroderma D cells, which results in failure to incise at u.v. light-induced pyrimidine dimers, has been partially but stably corrected by transfection of immortalised cells with the denV pyrimidine dimer glycosylase gene of bacteriophage T4. Transfectants selected either for a dominant marker on the mammalian vector carrying the prokaryotic gene or for the dominant marker plus resistance to killing by u.v. light, have been shown to express the denV gene to varying degrees. denV expression results in significant phenotypic change in the initially repair-deficient, u.v.-hypersensitive cells. Increased resistance to u.v. light and more rapid recovery of replicative DNA synthesis following u.v. irradiation have been correlated both with improved repair DNA synthesis and with a novel dimer incision capability present in denV transfected Xeroderma cells but not as evident in transfected normal cells. Most of the transfectants contain a single integrated copy of the denV gene; increase in denV copy number does not result in either increased gene expression or enhanced survival to u.v. light. These results show that expression of a heterologous prokaryotic repair gene can partially compensate for the genetic defect in a human Xeroderma D cell.

Full text

PDF
3125

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrand J. E., Murray A. M. Benzpyrene groups bind preferentially to the DNA of active chromatin in human lung cells. Nucleic Acids Res. 1982 Mar 11;10(5):1547–1555. doi: 10.1093/nar/10.5.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bohr V. A., Okumoto D. S., Hanawalt P. C. Survival of UV-irradiated mammalian cells correlates with efficient DNA repair in an essential gene. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3830–3833. doi: 10.1073/pnas.83.11.3830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brady G., Funk A., Mattern J., Schütz G., Brown R. Use of gene transfer and a novel cosmid rescue strategy to isolate transforming sequences. EMBO J. 1985 Oct;4(10):2583–2588. doi: 10.1002/j.1460-2075.1985.tb03974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Collins A. R., Johnson R. T. Repair and survival after UV in quiescent and proliferating Microtus agrestis cells: different rates of incision and different dependence on DNA precursor supply. J Cell Physiol. 1979 Apr;99(1):125–137. doi: 10.1002/jcp.1040990114. [DOI] [PubMed] [Google Scholar]
  5. Corsaro C. M., Pearson M. L. Enhancing the efficiency of DNA-mediated gene transfer in mammalian cells. Somatic Cell Genet. 1981 Sep;7(5):603–616. doi: 10.1007/BF01549662. [DOI] [PubMed] [Google Scholar]
  6. Elliott G. C., Johnson R. T. DNA repair in mouse embryo fibroblasts. II. Responses of nontransformed, preneoplastic and tumorigenic cells to ultraviolet irradiation. Mutat Res. 1985 May;145(3):185–194. doi: 10.1016/0167-8817(85)90026-4. [DOI] [PubMed] [Google Scholar]
  7. Erixon K., Ahnström G. Single-strand breaks in DNA during repair of UV-induced damage in normal human and xeroderma pigmentosum cells as determined by alkaline DNA unwinding and hydroxylapatite chromatography: effects of hydroxyurea, 5-fluorodeoxyuridine and 1-beta-D-arabinofuranosylcytosine on the kinetics of repair. Mutat Res. 1979 Feb;59(2):257–271. doi: 10.1016/0027-5107(79)90164-7. [DOI] [PubMed] [Google Scholar]
  8. Friedberg E. C. The molecular biology of nucleotide excision repair of DNA: recent progress. J Cell Sci Suppl. 1987;6:1–23. doi: 10.1242/jcs.1984.supplement_6.1. [DOI] [PubMed] [Google Scholar]
  9. Giannelli F., Pawsey S. A., Avery J. A. Differences in patterns of complementation of the more common groups of xeroderma pigmentosum: possible implications. Cell. 1982 Jun;29(2):451–458. doi: 10.1016/0092-8674(82)90161-1. [DOI] [PubMed] [Google Scholar]
  10. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  11. Hoeijmakers J. H., Odijk H., Westerveld A. Differences between rodent and human cell lines in the amount of integrated DNA after transfection. Exp Cell Res. 1987 Mar;169(1):111–119. doi: 10.1016/0014-4827(87)90230-8. [DOI] [PubMed] [Google Scholar]
  12. Johnson R. T., Collins A. R., Squires S., Mullinger A. M., Elliott G. C., Downes C. S., Rasko I. DNA repair under stress. J Cell Sci Suppl. 1987;6:263–288. doi: 10.1242/jcs.1984.supplement_6.18. [DOI] [PubMed] [Google Scholar]
  13. Johnson R. T., Squires S., Elliott G. C., Koch G. L., Rainbow A. J. Xeroderma pigmentosum D-HeLa hybrids with low and high ultraviolet sensitivity associated with normal and diminished DNA repair ability, respectively. J Cell Sci. 1985 Jun;76:115–133. doi: 10.1242/jcs.76.1.115. [DOI] [PubMed] [Google Scholar]
  14. La Belle M., Linn S. In vivo excision of pyrimidine dimers is mediated by a DNA N-glycosylase in Micrococcus luteus but not in human fibroblasts. Photochem Photobiol. 1982 Sep;36(3):319–324. doi: 10.1111/j.1751-1097.1982.tb04381.x. [DOI] [PubMed] [Google Scholar]
  15. Melton D. W., McEwan C., McKie A. B., Reid A. M. Expression of the mouse HPRT gene: deletional analysis of the promoter region of an X-chromosome linked housekeeping gene. Cell. 1986 Jan 31;44(2):319–328. doi: 10.1016/0092-8674(86)90766-x. [DOI] [PubMed] [Google Scholar]
  16. Meuth M., Arrand J. E. Alterations of gene structure in ethyl methane sulfonate-induced mutants of mammalian cells. Mol Cell Biol. 1982 Nov;2(11):1459–1462. doi: 10.1128/mcb.2.11.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nakabeppu Y., Yamashita K., Sekiguchi M. Purification and characterization of normal and mutant forms of T4 endonuclease V. J Biol Chem. 1982 Mar 10;257(5):2556–2562. [PubMed] [Google Scholar]
  18. Paterson M. C., Middlestadt M. V., MacFarlane S. J., Gentner N. E., Weinfeld M., Eker A. P. Molecular evidence for cleavage of intradimer phosphodiester linkage as a novel step in excision repair of cyclobutyl pyrimidine photodimers in cultured human cells. J Cell Sci Suppl. 1987;6:161–176. doi: 10.1242/jcs.1984.supplement_6.11. [DOI] [PubMed] [Google Scholar]
  19. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  20. Simons J. W. Development of a liquid-holding technique for the study of DNA-repair in human diploid fibroblasts. Mutat Res. 1979 Feb;59(2):273–283. doi: 10.1016/0027-5107(79)90165-9. [DOI] [PubMed] [Google Scholar]
  21. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  22. Squires S., Johnson R. T., Collins A. R. Initial rates of DNA incision in UV-irradiated human cells: differences between normal, xeroderma pigmentosum and tumour cells. Mutat Res. 1982 Aug;95(2-3):389–404. doi: 10.1016/0027-5107(82)90273-1. [DOI] [PubMed] [Google Scholar]
  23. Tanaka K., Sekiguchi M., Okada Y. Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus). Proc Natl Acad Sci U S A. 1975 Oct;72(10):4071–4075. doi: 10.1073/pnas.72.10.4071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Valerie K., Fronko G., Henderson E. E., de Riel J. K. Expression of the denV gene of coliphage T4 in UV-sensitive rad mutants of Saccharomyces cerevisiae. Mol Cell Biol. 1986 Oct;6(10):3559–3562. doi: 10.1128/mcb.6.10.3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Valerie K., Henderson E. E., de Riel J. K. Expression of a cloned denV gene of bacteriophage T4 in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4763–4767. doi: 10.1073/pnas.82.14.4763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Valerie K., de Riel J. K., Henderson E. E. Genetic complementation of UV-induced DNA repair in Chinese hamster ovary cells by the denV gene of phage T4. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7656–7660. doi: 10.1073/pnas.82.22.7656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zelle B., Lohman P. H. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G. Mutat Res. 1979 Sep;62(2):363–368. doi: 10.1016/0027-5107(79)90091-5. [DOI] [PubMed] [Google Scholar]
  28. Zelle B., Reynolds R. J., Kottenhagen M. J., Schuite A., Lohman P. H. The influence of the wavelength of ultraviolet radiation on survival, mutation induction and DNA repair in irradiated Chinese hamster cells. Mutat Res. 1980 Aug;72(3):491–509. doi: 10.1016/0027-5107(80)90121-9. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES