Skip to main content
Springer logoLink to Springer
. 2017 Aug 1;2017(1):176. doi: 10.1186/s13660-017-1451-7

Approximation properties of Chlodowsky variant of (p,q) Bernstein-Stancu-Schurer operators

Vishnu Narayan Mishra 1,5, M Mursaleen 2,, Shikha Pandey 3, Abdullah Alotaibi 4
PMCID: PMC5539272  PMID: 28824262

Abstract

In the present paper, we introduce the Chlodowsky variant of (p,q) Bernstein-Stancu-Schurer operators which is a generalization of (p,q) Bernstein-Stancu-Schurer operators. We also discuss its Korovkin-type approximation properties and rate of convergence.

Keywords: (p,q)-integers; (p,q)-Bernstein operators; linear positive operators

Introduction and preliminaries

In 1912, Bernstein [1] introduced the following sequence of operators Bn:C[0,1]C[0,1] defined for any nN and for any function fC[0,1]:

Bn(f;x)=k=0n(nk)xk(1x)nkf(kn),x[0,1]. 1.1

Later various generalizations of these operators were discovered. It has been proved as a powerful tool for numerical analysis, computer aided geometric design and solutions of differential equations. In last two decades, the applications of q-calculus has played an important role in the area of approximation theory, number theory and theoretical physics. In 1987, Lupaş [2] and in 1997, Phillips [3] introduced a sequence of Bernstein polynomials based on q-integers and investigated its approximation properties. Several researchers obtained various other generalizations of operators based on q-calculus. For any function fC[0,1] the q-form of Bernstein operator is described by Lupaş [2] as

Ln,q(f;x)=k=0n[nk]qqk(k1)/2xk(1x)nkj=0n1(1x+qjx)f([k]q[n]q),x[0,1]. 1.2

In 1932, Chlodowsky [4] presented a generalization of Bernstein polynomials on an unbounded set, known as Bernstein-Chlodowsky polynomials,

Bn(f,x)=k=0nf(knbn)(nk)(xbn)k(1xbn)nk,0xbn, 1.3

where bn is an increasing sequence of positive terms with the properties bn and bnn0 as n.

In 2008, Karsli and Gupta [5] expressed the q-analogue of Bernstein-Chlodowsky polynomials by

Cn(f;q;x)=k=0n[nk]q(xbn)ks=0nk1(1qsxbn)f([k]q[n]qbn),0xbn, 1.4

where bn is an increasing sequence of positive values, with the properties bn and bn[n]q0 as n.

Recently, Mursaleen et al. [69] proposed and analyzed approximation properties for (p,q) analogue of Bernstein operators, Bernstein-Stancu operators and Bernstein-Schurer operators. Besides this, we also refer to some recent related work on this topic: e.g. [1020].

In 2015, Mursleen et al. [7], investigated the (p,q) form of the Bernstein-Stancu operator, which is given by

Sn(α,β)(f;x,p,q)=1pn(n1)2k=0n[nk]p,qpk(k1)2xks=0nk1(psqsx)f(pnk[k]p,q+α[n]p,q+β), 1.5

where α,β are non-negative integers and fC[0,1], x[0,1] and 0αβ.

For the first few moments, we get the following lemma.

Lemma 1

See [7]

For the operators Sn(α,β), we have

  1. Sn(α,β)(1;x,p,q)=1,

  2. Sn(α,β)(t;x,p,q)=[n]p,qx+α[n]p,q+β,

  3. Sn(α,β)(t2;x,p,q)=1([n]p,q+β)2(q[n]p,q[n1]p,qx2+[n]p,q(2α+pn1)x+α2).

Construction of the operators

Considering the revised form of (p,q) analogue of Bernstein operators [7], we construct the Chlodowsky variant of (p,q) Bernstein-Stancu-Schurer operators as

Cn,m(α,β)(f;x,p,q)=1p(n+m)(n+m1)2k=0n+m[n+mk]p,qpk(k1)2(xbn)k×s=0n+mk1(psqsxbn)f(pn+mk[k]p,q+α[n]p,q+βbn), 2.1

where nN, m,α,βN0, with αβ1, 0xbn, 0<q<p1 and bn is an increasing sequence of positive terms with the properties bn and bn[n]p,q0 as n. Evidently, Cn,m(α,β) is a linear and positive operator. Consider the case if p,q1 and m=0 in (2.1), then it will reduce to the Stancu-Chlodowsky polynomials [21].

Let us assume the number n+m=nm, we will use this notation throughout in this paper. Next, we have obtained the following lemma using simple calculations.

Lemma 2

Let Cn,m(α,β)(f;x,p,q) be given by (2.1). The first few moments of the operators are

  • (i)

    Cn,m(α,β)(1;x,p,q)=1,

  • (ii)

    Cn,m(α,β)(t;x,p,q)=[nm]p,qx+αbn[n]p,q+β,

  • (iii)

    Cn,m(α,β)(t2;x,p,q)=1([n]p,q+β)2(q[nm]p,q[nm1]p,qx2+[nm]p,q(2α+pnm1)bnx+α2bn2),

  • (iv)

    Cn,m(α,β)((tx);x,p,q)=([nm]p,q[n]p,q+β1)x+αbn[n]p,q+β,

  • (v)
    Cn,m(α,β)((tx)2;x,p,q)=(12[nm]p,q([n]p,q+β)+q[nm]p,q[nm1]p,q([n]p,q+β)2)x2+((2α+pnm1)[nm]p,q([n]p,q+β)2α)bn([n]p,q+β)x+α2bn2([n]p,q+β)2.

Proof

(i)

Cn,m(α,β)(1;x,p,q)=1p(nm)(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)ks=0nmk1(psqsxbn)=1.

(ii)

Cn,m(α,β)(t;x,p,q)=1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)(pnmk[k]p,q+α[n]p,q+βbn)=[nm]p,qpnm(nm3)2([n]p,q+β)k=0nm1[nm1k]p,qpk(k+1)2(xbn)k+1×s=0(nmk2)(psqsxbn)(bnpk+1)+1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)(α[n]p,q+βbn)=[nm]p,q([n]p,q+β)x1p(nm1)(nm2)2k=0nm1[nm1k]p,qpk(k1)2(xbn)k×s=0nmk2(psqsxbn)+αbn([n]p,q+β)=[nm]p,q([n]p,q+β)x+αbn([n]p,q+β).

(iii)

Cn,m(α,β)(t2;x,p,q)=1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)(pnmk[k]p,q+α[n]p,q+βbn)2=1pnm(nm1)21([n]p,q+β)2[p2nmk=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)bn2[k]p,q2p2k+2αpnmk=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)bn2[k]p,qpk+α2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)bn2]=1([n]p,q+β)2[p2nmpnm(nm1)2[nm]p,qbn2k=0nm1[nm1k]p,qpk(k+1)2(xbn)k+1×s=0(nmk2)(psqsxbn)[k+1]p,qp2(k+1)+pnmpnm(nm1)22α[nm]p,qbn2k=0nm1[nm1k]p,qpk(k+1)2(xbn)k+1×s=0(nmk2)(psqsxbn)1p(k+1)+α2bn2].

Now using [k+1]p,q=pk+q[k]p,q, we will obtain the result.

Using the linear property of operators, we have

Cn,m(α,β)((tx);x,p,q)=Cn,m(α,β)(t;x,p,q)xCn,m(α,β)(1;x,p,q)=([nm]p,q[n]p,q+β1)x+αbn[n]p,q+β.

Hence, we get (iv).

Similar calculations give

Cn,m(α,β)((tx)2;x,p,q)=Cn,m(α,β)(t2;x,p,q)2xCn,m(α,β)(t;x,p,q)+x2Cn,m(α,β)(1;x,p,q).

Substituting the results of (i), (ii) and (iii), we prove the result (v). □

Lemma 3

For every fixed 0<q<p1, we have

[nm]p,q[nm1]p,q([n]p,q+β)2q2[nm]p,q[n]p,q+β+1((pn+qn)[m]p,qβ[n]p,q+β)2.

Proof

[nm1]p,qq=pn+m1qn+m1pqq=pn+m1qqn+mpqpn+mqn+mpq(since q<ppn+m1q<pn+m)=[nm]p,q.

Thus, [nm]p,q[nm1]p,qq[nm]p,q2, and we get

[nm]p,q[nm1]p,q([n]p,q+β)2q2[nm]p,q[n]p,q+β+1([nm]p,q[n]p,q+β1)2=1([n]p,q+β)2{pn+mqn+mpqpnqnpqβ}2=1([n]p,q+β)2{pnpmqnqmpn+qnpqβ}2=1([n]p,q+β)2{pnpmpnqm+pmqnqnqm+pnqmpn+qnpmqnpqβ}2=1([n]p,q+β)2{pn(pmqm)+qn(pmqm)+pn(qm1)+qn(1pm)pqβ}2=1([n]p,q+β)2{(pn+qn)(pmqm)+qn(1pm)pn(1qm)pqβ}2=1([n]p,q+β)2{(pn+qn)[m]p,qβpn(1qm)qn(1pm)pq}2((pn+qn)[m]p,qβ)2([n]p,q+β)2since 0<q<p1.

We can conclude the last inequality using the following statements:

Since 0<q<p1, we have 0<qn<pn1 and 0<(1pm)<(1qm)1, hence qn(1pm)<pn(1qm) i.e. pn(1qm)qn(1pm)>0. □

Remark 1

As a result of Lemma 2 and 3, we have

Cn,m(α,β)((tx)2;x,p,q)(((pn+qn)[m]p,qβ)2([n]p,q+β)2)x2+([nm]p,q(2α+pn1)([n]p,q+β)2)bnx+α2bn2([n]p,q+β)2.

Results and discussion

In this paper we have constructed and investigated a Chlodowsky variant of (p,q) Bernstein-Stancu-Schurer operator. We have showed that our modified operators have a better error estimation than the classical ones. We have also obtained some approximation results with the help of the well-known Korovkin theorem and the weighted Korovkin theorem for these operators. Furthermore, we studied convergence properties in terms of the modulus of continuity for functions in Lipschitz class. Next we have also obtained the Voronovskaja-type result for these operators.

Korovkin-type approximation theorem

Assume Cρ is the space of all continuous functions f such that

|f(x)|Mρ(x),a<x<b,

and ρ(x) is the weight function.

Then Cρ is a Banach space with the norm

fρ=supa<x<b|f(x)|ρ(x).

Consider the subspace Cρ0:={fCρ:lim|x||f(x)|ρ(x) is finite}.

The subsequent Theorem 1 is a Korovkin approximation theorem in weighted space.

Theorem 1

See [22]

There exists a sequence of positive linear operators Un, acting from Cρ0 to Cρ0, satisfying the conditions

  1. limnUn(1;)1ρ=0,

  2. limnUn(ϕ;)ϕρ=0,

  3. limnUn(ϕ2;)ϕ2ρ=0,

where ϕ(x) is a continuous and increasing function on (,) such that limx±ϕ(x)=± and ρ(x)=1+ϕ2, and there exists a function fCρ0 for which

limnUnffρ=0.

Consider the weight function ρ(x)=1+x2 and operator (see [23])

Un,mα,β(f;x,p,q)={Cn,mα,β(f;x,p,q)if x[0,bn],f(x)if x[0,bn].

For fC1+x2, we have

Un,mα,β(f;,p,q)1+x2supx[0,bn]|Cn,mα,β(f;x,p,q)|1+x2+supx(bn,)|f(x)|1+x2f1+x2[supx[0,bn)|Cn,mα,β(1+t2;x,p,q)|1+x2+1].

Now, using Lemma 2 we will obtain

Un,mα,β(f;,p,q)1+x2Mf1+x2, 3.1

which means that Un,mα,β(f;,p,q) is bounded operator, henceforth a continuous operator too. Since ‘An operator between two normed spaces is a bounded linear operator if and only if it is a continuous linear operator.’

Now, consider the sequences (pn) and (qn) for 0<qn<pn1 satisfying

limnpn=limnqn=1,limnpnn=a,limnqnn=cwhere 0<a,c<1,ac hence limn[n]pn,qn=. 3.2

Theorem 2

For all fC1+x20, 0xbn, we have

limnUn,mα,β(f;,pn,qn)f()1+x2=0 3.3

provided that p:=(p)n, q:=(q)n with 0<qn<pn1 satisfying (3.2) and limnbn[n]pn,qn=0.

Proof

Using the results of Theorem 1 and Lemma 2(i), (ii) and (iii), we will obtain the following assessments, respectively:

sup0xbn|Un,mα,β(1;x,pn,qn)1|1+x2=0, 3.4
sup0xbn|Un,mα,β(t;x,pn,qn)x|1+x2sup0xbn|[nm]pn,qn[n]pn,qn+β1|x+αbn[n]pn,qn+β1+x2|[nm]pn,qn[n]pn,qn+β1|+αbn[n]pn,qn+β0, 3.5

and

sup0xbn|Un,mα,β(t2;x,pn,qn)x2|1+x2sup0xbn11+x2|(qn[nm]pn,qn[nm1]pn,qnx2+[nm]pn,qn(2α+pnnm1)bnx+α2bn2)([n]pn,qn+β)2x2|{|qn[nm]pn,qn[nm1]pn,qn([n]pn,qn+β)21|+|[nm]pn,qn(2α+pnnm1)([n]pn,qn+β)2|bn2+α2([n]pn,qn+β)2}0, 3.6

whenever n.

Since the weight function is invariant w.r.t. positive and negative values of x, and conditions (3.4)-(3.6) are true for all tR, we can use Theorem 1 and get the desired result (3.3), which implies that the operator sequence Cn,mα,β converges uniformly to any continuous function in weighted space C1+x20 for x[0,bn]. □

Theorem 3

Assuming c as a positive and real number independent of n and f as a continuous function which vanishes on [c,). Let p:=(pn), q:=(qn) with 0<qn<pn1 satisfying (3.2) and limnbn2[n]pn,qn=0. Then we have

limnsup0xbn|Cn,mα,β(f;x,pn,qn)f(x)|=0.

Proof

From the hypothesis on f, it is bounded i.e. |f(x)|M (M>0). For any ϵ>0, we have

|f(pnnmk[k]pn,qn+α[n]pn,qn+βbn)f(x)|<ϵ+2Mδ2(pnnmk[k]pn,qn+α[n]pn,qn+βbnx)2,

where x[0,bn] and δ=δ(ϵ) are independent of n. Operating with the operator (2.1) on both sides, we can conclude by using Lemma 3 and Remark 1,

sup0xbn|Cn,mα,β(f;x,pn,qn)f(x)|ϵ+2Mδ2bn2{|((pn+qn)[m]p,qβ)2([n]p,q+β)2|+|(2α+pnnm1)[nm]pn,qn([n]pn,qn+β)2|+α2([n]pn,qn+β)2}.

Since bn2[n]pn,qn=0 as n, we have the desired result. □

Rate of convergence

We will find the rate of convergence for functions in the Lipschitz class LipM(γ) (0<γ1). Assume that CB[0,) denotes the space of bounded continuous functions on [0,). A function fCB[0,) belongs to LipM(γ) if

|f(t)f(x)|M|tx|γ,for t,x[0,).

Theorem 4

Let fLipM(γ), then

|Cn,mα,β(f;x,p,q)f(x)|M(λn,p,q(x))γ/2,

where λn,p,q(x)=Cn,mα,β((tx)2;x,p,q).

Proof

Since fLipM(γ), and the operator Cn,mα,β(f;x,p,q) is linear and monotone,

|Cn,mα,β(f;x,p,q)f(x)|=|1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)f(pnmk[k]p,q+α[n]p,q+βbn)f(x)|1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|f(pnmk[k]p,q+α[n]p,q+βbn)f(x)|M1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|(pnmk[k]p,q+α[n]p,q+βbn)x|γ.

Using Hölder’s inequality with the values p=2γ and q=22γ, we get

|Cn,mα,β(f;x,p,q)f(x)|Mpnm(nm1)2k=0nm[{[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)((pnmk[k]p,q+α[n]p,q+βbn)x)2}γ2×{[nmk]p,qpk(k1)2(xbn)ks=0(nmk1)(psqsxbn)}2γ2]M[{1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)((pnmk[k]p,q+α[n]p,q+βbn)x)2}γ2×{1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)}2γ2]=M[Cn,mα,β((tx)2;x,p,q)]γ2M(λn,p,q(x))γ2.

 □

In order to obtain rate of convergence in terms of modulus of continuity ω(f;δ), we assume that, for any fCB[0,) and x0, the modulus of continuity of f is given by

ω(f;δ)=max|tx|δt,x[0,)|f(t)f(x)|. 3.7

Thus it implies for any δ>0

|f(x)f(y)|ω(f;δ)(|xy|δ+1). 3.8

Theorem 5

If fCB[0,), we have

|Cn,mα,β(f;x,p,q)f(x)|2ω(f;λn,p,q(x)),

where ω(f;) is the modulus of continuity of f and λn,p,q(x) is the same as in Theorem 4.

Proof

Using the triangular inequality, we get

|Cn,mα,β(f;x,p,q)f(x)|=|1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)f(pnmk[k]p,q+α[n]p,q+βbn)f(x)|1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|f(pnmk[k]p,q+α[n]p,q+βbn)f(x)|.

Now using (3.8) and Hölder’s inequality, we get

|Cn,mα,β(f;x,p,q)f(x)|=1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)(|pnmk[k]p,q+α[n]p,q+βbnx|δ+1)ω(f;δ)ω(f;δ)1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)+ω(f;δ)δ1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|pnmk[k]p,q+α[n]p,q+βbnx|=ω(f;δ)+ω(f;δ)δ{1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)(pnmk[k]p,q+α[n]p,q+βbnx)2}12=ω(f;δ)+ω(f;δ)δ{Cn,mα,β((tx)2;x,p,q)}1/2.

Now choosing δ=λn,p,q(x) as in Theorem 4, we have

|Cn,mα,β(f;x,p,q)f(x)|2ω(f;λn,p,q(x)).

 □

Next we calculate the rate of convergence in terms of the modulus of continuity of the derivative of a function.

Theorem 6

Let A>0. If f(x) has a continuous bounded derivative f(x) and ω(f;δ) is the modulus of continuity of f(x) in x[0,max{bn,A}], then

|f(x)Cn,mα,β(f;x,p,q)|M(|[nm]p,q[n]p,q+β1|A+αbn[n]p,q+β)+2(Bn,p,q(α,β))1/2ω(f;(Bn,p,q(α,β))1/2),

where M is a positive constant such that |f(x)|M and

Bn,p,q(α,β)=|12[nm]p,q([n]p,q+β)+q[nm]p,q[nm1]p,q([n]p,q+β)2|A2+|[nm]p,q(2α+pnm1)([n]p,q+β)22α([n]p,q+β)|Abn+α2bn2([n]p,q+β)2.

Proof

Using the mean value theorem, we have

f(pnmk[k]p,q+α[n]p,q+βbn)f(x)=(pnmk[k]p,q+α[n]p,q+βbnx)f(ξ)=(pnmk[k]p,q+α[n]p,q+βbnx)f(x)+(pnmk[k]p,q+α[n]p,q+βbnx)(f(ξ)f(x)),

where ξ is a point between x and pnmk[k]p,q+α[n]p,q+βbn. By using the above identity, we get

Cn,mα,β(f;x,p,q)f(x)=f(x)1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)(pnmk[k]p,q+α[n]p,q+βbnx)+1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)(pnmk[k]p,q+α[n]p,q+βbnx)(f(ξ)f(x)).

Hence,

|Cn,mα,β(f;x,p,q)f(x)||f(x)||Cn,mα,β((tx);x,p,q)|+1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|pnmk[k]p,q+α[n]p,q+βbnx||f(ξ)f(x)|M(|[nm]p,q[n]p,q+β1|A+αbn[n]p,q+β)+1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|pnmk[k]p,q+α[n]p,q+βbnx||f(ξ)f(x)|M(|[n+m]p,q[n]p,q+β1|A+αbn[n]p,q+β)+1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|pnmk[k]p,q+α[n]p,q+βbnx|×ω(f;δ)(|pnmk[k]p,q+α[n]p,q+βbnx|δ+1),

since

|ξx||pnmk[k]p,q+α[n]p,q+βbnx|.

Using it, we have

|Cn,mα,β(f;x,p,q)f(x)|M(|[nm]p,q[n]p,q+β1|A+αbn[n]p,q+β)+ω(f;δ)1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|pnmk[k]p,q+α[n]p,q+βbnx|+ω(f;δ)δ1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|pnmk[k]p,q+α[n]p,q+βbnx|2.

Now using Cauchy-Schwarz inequality for the second term, we obtain

|Cn,mα,β(f;x,p,q)f(x)|M(|[nm]p,q[n]p,q+β1|A+αbn[n]p,q+β)+ω(f;δ)(1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|pnmk[k]p,q+α[n]p,q+βbnx|2)1/2+ω(f;δ)δ1pnm(nm1)2k=0nm[nmk]p,qpk(k1)2(xbn)k×s=0(nmk1)(psqsxbn)|pnmk[k]p,q+α[n]p,q+βbnx|2=M(|[nm]p,q[n]p,q+β1|A+αbn[n]p,q+β)+ω(f;δ)Cn,mα,β((tx)2;x,p,q)+ω(f;δ)δCn,mα,β((tx)2;x,p,q).

Using Lemma 2, we see

sup0xACn,m(α,β)((tx)2;x,p,q)sup0xA[(12[nm]p,q([n]p,q+β)+q[nm]p,q[nm1]p,q([n]p,q+β)2)x2+([nm]p,q(2α+pnm1)([n]p,q+β)2α)bnx([n]p,q+β)+α2bn2([n]p,q+β)2]|12[nm]p,q([n]p,q+β)+q[nm]p,q[nm1]p,q([n]p,q+β)2|A2+|[nm]p,q(2α+pnm1)([n]p,q+β)22α([n]p,q+β)|Abn+α2bn2([n]p,q+β)2:=Bn,p,q(α,β).

Thus,

|Cn,mα,β(f;x,p,q)f(x)|M(|[nm]p,q[n]p,q+β1|A+αbn[n]p,q+β)+ω(f;δ)[(Bn,p,q(α,β))1/2+1δBn,p,q(α,β)].

Choosing δ:=(Bn,p,q(α,β))1/2, we get the desired result. □

Voronovskaja-type result

Now, we prove a Voronovskaja-type approximation theorem with the help of the Cn,m(α,β) family of linear operators defined by (2.1).

Lemma 4

Let (pn) and (qn) be two sequences satisfying (3.2) and x[0,E] where ER+. Then we get

limn[n]pn,qnbnCn,m(α,β)(tx;x,pn,qn)=α 3.9

and

limn[n]pn,qnbnCn,m(α,β)((tx)2;x,pn,qn)=ax, 3.10

where a(0,1).

Proof

We shall prove only (3.10) because the proof of (3.9) is similar. Let x[0,E]. Then, by Lemma (2), we obtain, for all nN,

[n]pn,qnbnCn,m(α,β)((tx)2;x,pn,qn)=[n]pn,qnbn(12[nm]pn,qn([n]pn,qn+β)+qn[nm]pn,qn[nm1]pn,qn([n]pn,qn+β)2)x2+((2α+pnn1)[nm]pn,qn([n]pn,qn+β)2α)[n]pn,qn([n]pn,qn+β)x+α2bn[n]pn,qn([n]pn,qn+β)2. 3.11

Now by taking the limit as n in (3.11), we obtain

limn[n]pn,qnbnCn,m(α,β)((tx)2;x,pn,qn)=ax,

which completes the proof. □

In a similar way to Lemma 4 one can deduce the following lemma.

Lemma 5

Let (pn) and (qn) be two sequences satisfying (3.2) and x[0,E] where ER+. There is a positive constants M0(x) depending only on x such that

limn[n]pn,qn2bn2Cn,m(α,β)((tx)4;x,pn,qn)M0(x). 3.12

Theorem 7

Let (pn) and (qn) be two sequences with the property (3.2). For every fC1+x20[0,) such that f,fC1+x20[0,), then

limn[n]pn,qnbn[Cn,m(α,β)(f(t);x,pn,qn)f(x)]=αf(x)+12axf(x)

uniformly in x[0,E].

Proof

Using the Taylor formula for fC1+x20, we have

f(t)=f(x)+f(x)(tx)+12f(x)(tx)2+ηx(t)(tx)2,

where the function ηx() is the remainder, limtxηx(t)=0. Since the operator Cn,m(α,β) is linear

[n]pn,qnbn[Cn,m(α,β)(f(t);x,pn,qn)f(x)]=[n]pn,qnbnf(x)Cn,m(α,β)(tx;x,pn,qn)+12[n]pn,qnbnf(x)Cn,m(α,β)((tx)2;x,pn,qn)+[n]pn,qnbnCn,m(α,β)(ηx(t)(tx)2;x,pn,qn) 3.13

for each nN. We will now show that

limn[n]pn,qnbnCn,m(α,β)(ηx(t)(tx)2;x,pn,qn)=0. 3.14

After application of the Cauchy-Schwarz inequality for the third term on the right hand side of (3.13), we find that

[n]pn,qnbnCn,m(α,β)(ηx(t)(tx)2;x,pn,qn)[n]pn,qnbn[Cn,m(α,β)(ηx2(t);x,pn,qn)]1/2[Cn,m(α,β)((tx)4;x,pn,qn)]1/2. 3.15

Let us take ηx2(t)=θx(t), x0, we obtain

lim|x||θx(t)|1+x2=lim|x||f(t)f(x)f(x)(tx)12f(x)(tx)2|2(tx)4(1+x2).

We have fC1+x20 i.e. lim|x||f(x)|1+x2= finite value, which means f is function with maximum order of x is 2. Henceforth x is of order 1 and 0, respectively, in f and f, i.e. f is constant.

We will get a finite value of the above limit because numerator is a polynomial in x having terms of degree less than or equal to four and f,f,fC1+x20. Thus θx(t)C1+x20.

Moreover, limtxθx(t)=0. From Theorem 2, we observe that

limnCn,m(α,β)(ηx2(t);x,pn,qn)=limnCn,m(α,β)(θx(t);x,pn,qn)=θx(x)=0 3.16

uniformly in x[0,E]. One obtains from Lemma 5 that

limn[n]pn,qn2bn2Cn,m(α,β)((tx)4;x,pn,qn)M0(x). 3.17

From these last two relations, the inclusion (3.14) holds true. Now by taking the limit as n in (3.13) and using Lemma (4), we conclude that

limn[n]pn,qnbn[Cn,m(α,β)(f(t);x,pn,qn)f(x)]=αf(x)+12axf(x)

uniformly in x[0,E], which leads us to the desired assertion of Theorem 7. □

Example

With the help of Maple, we show a comparison of the (p,q) Bernstein-stancu operator and the operator (2.1) to the function f(x)=sin(x) under the following parameters: α=1, β=1, p=0.9, q=0.8, n=1 and bn=ln(1+n) within the interval [0,b1] i.e. [0,loge11]. We have found it to be convenient to investigate our series only for finite sums. More powerful equipments with higher speed can easily compute the more complicated infinite series in a similar manner.

It is clear from the Figure 1 that approximation by the operator (2.1) is better than by (p,q) Bernstein-stancu operator for f(x)=sinx and it can be improved further by taking appropriate values of m and sequence bn.

Figure 1.

Figure 1

Comparison of (p,q) Chlodowsky type Bernstein-Stancu-Schurer operators and (p,q) Bernstein-Stancu operators for Sin(x) .

Conclusion

A better approximation of complex functions over the required interval [0,bn] can be attained using the Chlodowsky variant of the (p,q) Bernstein-Stancu-Schurer operator for choosing suitable values of the sequence bn and n compared to classical operators over the fixed interval [0,1].

Acknowledgements

The authors would like to express their deep gratitude to the anonymous learned referee(s) and the editor for their valuable suggestions and constructive comments, which resulted in the subsequent improvement of this research article. The third author, SP, acknowledges MHRD, New Delhi, India for supporting this research article to carry out her research work (Ph.D.) under the supervision of Dr. Vishnu Narayan Mishra at Sardar Vallabhbhai National Institute of Technology, Ichchhanath Mahadev, Dumas Road, Surat (Gujarat), India, under FIR category.

Footnotes

Funding

The fourth author, AA, gratefully acknowledges the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1. Bernstein, SN: Démostration du théoréme de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow (2) 13, 1-2 (1912/1913)
  • 2.Lupaş A. Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca. 1987. A q-analogue of the Bernstein operator; pp. 85–92. [Google Scholar]
  • 3.Phillips GM. Numerical Analysis. River Edge: World Scientific; 1996. On generalized Bernstein polynomials; pp. 263–269. [Google Scholar]
  • 4.Ibikli E. Approximation by Bernstein-Chlodowsky polynomials. Hacet. J. Math. Stat. 2003;32:1–5. [Google Scholar]
  • 5.Karsli H, Gupta V. Some approximation properties of q-Chlodowsky operators. Appl. Math. Comput. 2008;195:220–229. [Google Scholar]
  • 6.Mursaleen M, Ansari KJ, Khan A. On (p,q)-analogue of Bernstein operators. Appl. Math. Comput. 2015;266:874–882. [Google Scholar]
  • 7.Mursaleen M, Ansari KJ, Khan A. Some approximation results by (p,q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015;264:392–402. [Google Scholar]
  • 8.Mursaleen M, Nasiruzzaman M, Nurgali A. Some approximation results on Bernstein-Schurer operators defined by (p,q)-integers. J. Inequal. Appl. 2015;2015 doi: 10.1186/s13660-015-0767-4. [DOI] [Google Scholar]
  • 9.Mursaleen M, Alotaibi A, Ansari KJ. On a Kantorovich variant of (p,q)-Szász-Mirakjan operators. J. Funct. Spaces. 2016;2016 [Google Scholar]
  • 10.Acar T. (p,q)-Generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci. 2016;39(10):2685–2695. doi: 10.1002/mma.3721. [DOI] [Google Scholar]
  • 11.Cai QB, Zhou G. On (p,q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. Appl. Math. Comput. 2016;276:12–20. doi: 10.1186/s13660-017-1559-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Içöz G, Mohapatra RN. Weighted approximation properties of Stancu type modification of q-Szász-Durrmeyer operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 2016;65(1):87–103. [Google Scholar]
  • 13.Içöz G, Mohapatra RN. Approximation properties by q-Durrmeyer-Stancu operators. Anal. Theory Appl. 2013;29(4):373–383. [Google Scholar]
  • 14.Mishra VN, Khatri K, Mishra LN, Deepmala Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators. J. Inequal. Appl. 2013;2013 doi: 10.1186/1029-242X-2013-586. [DOI] [Google Scholar]
  • 15.Mishra VN, Pandey S. On (p,q) Baskakov-Durrmeyer-Stancu operators. Adv. Appl. Clifford Algebras. 2016 [Google Scholar]
  • 16.Mishra VN, Pandey S. On Chlodowsky variant of (p,q) Kantorovich-Stancu-Schurer operators. Int. J. Anal. Appl. 2016;11(1):28–39. doi: 10.1186/s13660-017-1451-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Mursaleen M, Khan F, Khan A. Approximation properties for modified q-Bernstein-Kantorovich operators. Numer. Funct. Anal. Optim. 2015;36(9):1178–1197. doi: 10.1080/01630563.2015.1056914. [DOI] [Google Scholar]
  • 18.Mursaleen M, Ansari KJ, Khan A. Stability of some positive linear operators on compact disk. Acta Math. Sci. 2015;35B(6):1–9. [Google Scholar]
  • 19.Mursaleen M, Khan F, Khan A. Approximation properties for King’s type modified q-Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 2015;2015(38):5242–5252. doi: 10.1002/mma.3454. [DOI] [Google Scholar]
  • 20.Sahai V, Yadav S. Representations of two parameter quantum algebras and (p,q)-special functions. J. Math. Anal. Appl. 2007;335:268–279. doi: 10.1016/j.jmaa.2007.01.072. [DOI] [Google Scholar]
  • 21.Ibikli E. On Stancu type generalization of Bernstein-Chlodowsky polynomials. Mathematica. 2000;42(65):37–43. [Google Scholar]
  • 22.Gadjiev AD. The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P.P. Korovkin. Dokl. Akad. Nauk SSSR. 1974;218(5):1001–1004. [Google Scholar]
  • 23.Vedi T, Özarslan MA. Chlodowsky variant of q-Bernstein-Schurer-Stancu operators. J. Inequal. Appl. 2014;2014 doi: 10.1186/1029-242X-2014-189. [DOI] [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES