Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2018 Jul 15.
Published in final edited form as: Exp Cell Res. 2017 Mar 20;356(2):128–135. doi: 10.1016/j.yexcr.2017.03.041

A compendium of proteins that interact with HIF-1α

Gregg L Semenza 1
PMCID: PMC5541399  NIHMSID: NIHMS864234  PMID: 28336293

Abstract

Hypoxia-inducible factor 1 (HIF-1) is the founding member of a family of transcription factors that function as master regulators of oxygen homeostasis. HIF-1 is composed of an O2-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. This review provides a compendium of proteins that interact with the HIF-1α subunit, many of which regulate HIF-1 activity in either an O2-dependent or O2-independent manner.

Keywords: Oxygen biology, Transcriptional regulation


Cells of metazoan species require a constant supply of O2 as a substrate for metabolic reactions, principally mitochondrial oxidative phosphorylation. Hypoxia-inducible factors (HIFs) regulate the transcription of hundreds of genes in order to maintain a balance between O2 supply and demand in every cell. The founding member of the HIF family, HIF-1, is composed of HIF-1α and HIF-1β subunits, each of which contains basic helix-loop-helix (bHLH) and Per-ARNT-Sim homology (PAS) domains that together mediate dimerization and DNA binding [1,2]. HIF-1β, which is also known as the aryl hydrocarbon nuclear translocator (ARNT) protein, heterodimerizes with several different bHLH-PAS proteins, whereas HIF-1α is the HIF-1-specific and O2-regulated subunit. HIF-1 activity is regulated by the interaction of HIF-1α with many other proteins [3156], which are listed in Table 1. This list, which continues to grow rapidly, is intended to be illustrative rather than comprehensive. For many of these proteins, the site of interaction has been localized to specific amino acid residues or to a particular domain within HIF-1α, such as the bHLH-PAS domain (amino acid residues 1–390 approximately), PAS-B subdomain (residues 200–330 approximately), O2-dependent degradation domain (residues 390–575 approximately), or C-terminal transactivation domain (residues 786–826).

Table 1.

Proteins that interact with hypoxia-inducible factor 1α (HIF-1α).

Protein Also known as HIF-1α Residuesa Other Partner (s): Reference(s)
ARD1 NAA10 401–603 [3,4]
ARNT HIF–1β 1–390 [1,2]
ARNTL BMAL1, MOP3 ND [5,6]
ARNTL2 BMAL2, MOP9 ND [7]
ARRB1 Arrestin-β1 ND p300 [8,9]
ATP6V0C 1–16 [10]
BCL2 ND HSP90 [11]
BHLHE41 DEC2, SHARP1 ND 20S proteasome [12]
BRG1 SMARCA4 ND [13]
CBP CREBBP 531–584, 786–826 [1417]
CBX4 Chromobox 4 299–604 PRC1 [18]
C/EBPα CEBPA 1–302 [19,20]
CDC6 1–329 MCMs [21]
CDK1 ND [22,23]
CDK2 ND [23]
CDK5 ND [24,25]
CDK8 ND Mediator [26]
CJUN (non-phospho) 345–787 [27,28]
CK1δ PAS-Bb [29]
COMMD1 1–300 HSP70 [30,31]
CRM1 616–658 [32]
CTNNB1 β-catenin 1–344 [33]
DROSHA ND [34]
E2F7 1–80 [35]
EAF2 (HIF–1α only)c VHL [36]
ERα ESR1 ND [37]
ERK1/2 MAPK3/1 616–658 [32]
ERRα,β,γ ESRRA/B/G HIF-α: HIF–1β SRC–1/2; PGC–1α/β [38,39]
ETV4 786–826 [40]
FBP1 604–786 [41]
FHL2 429–608 [42]
FIH–1 757–826 VHL [43]
FLNA (HIF–1α only) [44]
FOXA2 1–390 p300 [45]
FOXP3 ND VHL [46]
GR NR3C1 85–153, 238–346 [47]
GPD1L ND [48]
GSK3β GSK3B ND [49]
HAF SART1 298–400 [50,51]
HBV X 1–400 [52]
HDAC1 ODD [53]
HDAC3 ODD [53]
HDAC4 ND [54,55]
HDAC6 ND [54]
HDAC7 601–785 [56]
HDM2 MDM2 bHLH; 776–826 p53 [57]
HEXIM1 ND [58]
HHV–8 vIRF bHLH [59]
HNF4 106–526 [60]
HPV E7 ND excludes HDACs [61]
HSPA8 HSC70 1–329; 529NEFKL CHIP, LAMP2A [62,63]
HSP70 331–427 CHIP [64]
HSP90 81–200 [65]
Importin 7 bHLH-PAS-A [66]
ING1b ING ND [67]
IRF1 ND [68]
JAB1 COPS5, CSN5 401–603 [69]
JMJD2C KDM4C 575–786 [70]
KAT5 TIP60 ND [71]
KDM1A LSD1 ND [72,73]
KSHV LANA 300–530 [74]
KSHV vIRF ND [75]
LAMP2A ND HSC70 [62]
MAX ND [76]
MCM2 ND [77]
MCM3 531–826 [77]
MCM5 ND [77]
MCM7 201–329 VHL, Elongin C [77]
MGCRACGAP ND [78]
MTA1 401–603; 576–785; 786–826 HDAC1 [79]
MUC1 ND p300 [80]
MYC 1–329 [81]
NBS1 1–400 [82]
NECDIN ODD [83]
NEMO ND IKKβ [84]
NOTCH ND [85]
NOTCH3 ND [86]
NQO1 331–575 [87]
OS-9 692–826 PHD2, PHD3 [88]
OTUD7B ND [89]
P14ARF 1–199, 463–452 [90]
P16 ND [91]
P53 TP53 1–330 [9294]
P300 786–826 [95,96]
PARP1 ND (HIF-–1α and HIF-2α) [97,98]
PCAF ND [99]
PER1 ND [100]
PER2 ND [101]
PHD1 ND [88,102]
PHD2 531–610 OS-9 [88,102]
PHD3 531–826 OS-9 [88,102]
PIASY 211–330, 331–698 (phosphorylated HIF–1α) [104]
PIN1 [105]
PKM2 81–200; 201–329; 331–427;575–786 PHD3 [106]
PLD1 1–401 PHD2 [107]
PLK3 ND [108]
PONTIN ND p300 [109]
PRDX1 ND [110]
PRDX2 575–786 [110]
PRDX4 531–826 [110]
PRDX6 ND [110]
PRKACA 1–200; 531–826 PRKAR1A [111]
PS1-NTF 1–364 PS1-CTF/Aph1a, Nct, Pen2 [112]
PSMA7 726–785 [113]
RACK1 GNB2L1 81–200 Elongin C, RHBDF1 [114]
RAPTOR ND [115]
RB 530–694 [116]
REF-1 531–584, 776–826 [14]
REPTIN ND HDAC1 [117]
RHOBTB3 ND PHD2, VHL, LIMD1 [118]
RND3 RHOE ND [119]
RON ND [120]
RSUME ND UBC9, VHL [121,122]
RUNX1 AML1 ND [123]
RUNX2 ODD [124]
RUNX3 603–826 PHD2 [125]
SENP1 ODD [126]
SEPT9_V1 SEPT9 HLH (HIF-1α only) comp RACK1 [127,128]
SET7 1–80, 201–330, 400–575, 576–785 [71,129]
SIRT1 600–826 [99,130]
SIRT2 ND [131]
SIRT6 ND [132]
SIRT7 ND [133]
SMAD3 ND [134]
SP1 PAS-B [81,135]
SPRY2 ND VHL [136]
SRC-1 776–826 [14]
SSAT1 201–329 RACK1 [137]
SSAT2 81–200 VHL, Elongin C [138]
STAT3 (HIF-1α only) CBP, P300 [139]
STUB1 CHIP 201–329 HSP70 [64]
SUMO-1 ND [140]
TAp63 ND [141]
TAp73 1–330 MDM2 [142]
TAZ ND [143]
TIF2 ND [14]
TRAF6 ND [144]
TSGA10 1–401(mHIF-1α I.2);PAS-B;TAD-C [145,146]
UCHL1 ND [147]
USP7 HAUSP ND [148]
USP8 ND [149]
USP19 bHLH-PAS SIAH1, SIAH2 [150]
VDU2 USP20 ND [151]
VHL 402+ND; 549–582 [152]
WWOX ND [153]
XBP1s (HIF-1α only) [154]
YAP ND [155]
YY1 ND [156]
a

ND, not determined.

b

In some papers, interacting proteins were shown to bind to truncated recombinant proteins containing only a certain domain or subdomain within HIF-1α (e.g. bHLH-PAS, ODD, or PAS-B) but the specific amino acid residues were not stated.

c

HIF-2α was tested and did not bind to the HIF-1α-interacting protein.

The majority of HIF-1α-interacting proteins that have been identified thus far regulate the stability of HIF-1α in either an O2-dependent or O2-independent manner. O2-dependent degradation is triggered by the prolyl hydroxylase domain proteins PHD1-3 [88,102]. Hydroxylation of HIF-1α at proline residue 402 or 564 facilitates binding of the von Hippel-Lindau protein (VHL), which recruits an E3 ubiquitin-protein ligase complex that catalyzes the covalent linkage of ubiquitin to lysine residues in HIF-1α, which serves as a signal for proteasomal degradation (151).

HIF-1α-interacting proteins that facilitate O2-dependent degradation may do so by stabilizing interactions between components of the hydroxylation complex or by stimulating ubiquitination of hydroxylated HIF-1α (Table 2). Many HIF-1α-interacting proteins that inhibit O2-dependent degradation do so by blocking the action of the VHL-E3 ligase complex or by catalyzing deubiquitination (Table 3). Other HIF-1α-interacting proteins facilitate O2-independent degradation (Table 4) by stimulating ubiquitination, SUMOylation, proteasomal degradation, or chaperone-mediated autophagy (lysosomal degradation). HIF-1α-interacting proteins that inhibit O2-independent degradation do so by altering ubiquitination or by catalyzing deSUMOylation (Table 5). Another large group of HIF-1α-interacting proteins serve as co-activators or co-repressors to regulate transactivation mediated by HIF-1α (Table 6).

Table 2.

Interacting proteins that stimulate O2- and PHD/VHL-dependent degradation of HIF-1α.

Protein Mechanism of action Reference
HEXIM1 Increased hydroxylation [58]
MCM7 Increased ubiquitination [77]
OS9 Increased hydroxylation [88]
PLD1 Increased hydroxylation [107]
RHOBTB3 Increased hydroxylation [118]
RUNX3 Increased hydroxylation [125]
SIRT2 Increased hydroxylation [131]
SPRY2 Increased ubiquitination [136]
SSAT2 Increased ubiquitination [138]
WWOX Increased hydroxylation [153]

Table 3.

Interacting proteins that inhibit O2-dependent degradation of HIF-1α.

Protein Mechanism of action Reference
ATP6V0C Competes with VHL for binding [10]
NQO1 Competes with PHDs for binding [87]
OTUD7B Mediates deubiquitination of HIF-1α [89]
RSUME Inhibits VHL-E3 ligase complex [122]
RUNX2 Competes with VHL for binding [124]
SENP1 Mediates deSUMOylation of HIF-1α [126]
UCHL1 Mediates deubiquitination of HIF-1α [147]
USP8 Mediates deubiquitination of HIF-1α [149]
USP20 Mediates deubiquitination of HIF-1α [151]

Table 4.

Interacting proteins that mediate O2-independent degradation of HIF-1α.

Protein Mechanism of action Reference
BHLHE41 Interaction with proteasome [12]
CDK2 Chaperone-mediated autophagy [23]
CHIP/HSP70 Ubiquitination [64]
CHIP/HSC70/LAMP2A Chaperone-mediated autophagy [62,63]
HAF Ubiquitination [50,51]
P53 MDM2-dependent ubiquitination [94]
PIASY SUMOylation [104]
RACK1 Ubiquitination [114]
SIRT1 ND [130]
SIRT7 Proteasome/lysosome-independent degradation [133]
SSAT1 RACK1-dependent ubiquitination [137]
TAp73 MDM2-dependent ubiquitination [142]

Table 5.

Interacting proteins that inhibit O2-independent degradation of HIF-1α.

Protein Mechanism of action Reference
BCL2 Inhibits ubiquitination by stabilizing HSP90 binding [11]
CDK1 Inhibits chaperone-mediated autophagy [22,23]
HSP90 Inhibits ubiquitination by RACK1 [65,114]
MUC1 Not determined [80]
SEPT9 Inhibits ubiquitination by RACK1 [127,128]
TRAF6 Stabilizes HIF-1α via K63-linked polyubiquitination [144]

Table 6.

Interacting proteins that regulate transactivation by HIF-1α.

Protein Mechanism of action Reference
CBP Coactivator; binds to non-hydroxylated C-terminal TADa [1417]
COMMD1 Blocks HIF-1α: HIF-1β heterodimerization [21,22]
EAF2 Disrupts interaction of CBP/p300 with HIF-1α [36]
FBP1 Co-repressor; inhibits C-terminal TAD [41]
FHL2 Co-repressor [42]
FIH-1 Hydroxylates N803 to block binding of CBP/p300 [43,157]
JMJD2C Coactivator; demethylates H3K9me3b at HREsc [70]
KAT5 Coactivator; required for RNA Pol II activation [71]
MCM7 Inhibits transactivation in a hydroxylation manner [77]
MGCRACGAP Blocks HIF-1α: HIF-1β heterodimerization [78]
MUC1 Stabilizes interaction of p300 with HIF-1α [80]
P300 Coactivator; binds to non-hydroxylated C-terminal TADb [95,96]
PARP1 Coactivator [97,98]
PCAF Coactivator; enhances p300 recruitment [99]
PKM2 Coactivator; enhances HIF-1 binding, p300 recruitment [106]
PONTIN Coactivator; increases recruitment of p300 [109]
REPTIN Recruits HDAC1 to a subset of HIF target genes [117]
SET7 Blocks binding of HIF-1 to DNA [71,129]
SIRT1 Deacetylates HIF-1α on K674 to inhibit p300 binding [99]
SIRT6 Co-repressor [132]
SRC1 Co-activator [14]
STAT3 Co-activator [139]
TAZ Co-activator; increases HIF-1α binding to HREs [143]
TIF2 Co-activator [14]
TSGA10 Blocks nuclear localization [145,146]
XBP1s Co-activator; increases RNA Pol II recruitment [154]
a

TAD, transactivation domain.

b

H3K9me3, histone 3, trimethylated on lysine 9.

c

HREs, hypoxia response elements.

Many of the proteins that interact with HIF-1α regulate HIF-1 activity by either promoting or inhibiting the interaction of HIF-1α with other proteins, as described above. In contrast, other HIF-1α-interacting proteins have a catalytic activity, such as acetylation, deacetylation, demethylation, phosphorylation, or ubiquitination, leading to post-translational modification of HIF-1α that alters its stability, subcellular localization, or transactivation function (Table 7).

Table 7.

Post-translational modification (PTM) of HIF-1α.

Interactor Site of PTM (AA#)* Type of PTM Consequence Ref
ATM 696 Phosphorylation Stabilization [158]
CBX4 391,477 Sumoylation Transactivation [18]
CDK1 668 Phosphorylation Stabilization [22]
CDK5 687 Phosphorylation Stabilization [25]
CK1δ 247 Phosphorylation Dimerization blocked [29,159]
CK2 796 Phosphorylation Transactivation [160,161]
ERK1/2 641,643 Phosphorylation Nuclear localization [32]
GSK-3β 551.555,589 Phosphorylation Degradation [49]
HDAC4 10,11,12,19,21 Deacetylation Stabilization [55]
LSD1 32 Demethylation Stabilization [161]
P300 709 Acetylation Stabilization [55]
PCAF 674 Acetylation Transactivation [99]
PIASY ND (not 391,477) Sumoylation Degradation [104]
PLK3 576,657 Phosphorylation Degradation [108]
PRKACA 63,692 Phosphorylation Degradation [111]
SENP1 ND Desumoylation Stabilization [126]
SET7 32 Methylation Repression [129]
SET7 32 Methylation Degradation [161]
SIRT1 674 Deacetylation Repression [99]
SIRT2 709 Deacetylation Degradation [131]
STUB1 ND Ubiquitination Degradation [64]
TRAF6 ND Ubiquitinationa Stabilization [144]
VHL 532,538,547 Ubiquitination* Degradation [162]
*

(AA#), the amino acid number of the HIF-1α residue that is subject to PTM is shown, based on GenBank accession number U22431.1.

*

K48-linked polyubiquitination.

a

K63-linked polyubiquitination.

In the era of Big Data Science, it is often frustrating that large projects to characterize gene expression, transcription factor binding, or protein-protein interactions often do not include HIF-1 because the experiments were performed using tissue culture cells cultured at 20% O2. The data presented here represent a compilation of studies using many different cell types and the observed protein interactions will of course only be observed in those cell types in which both proteins are expressed. In addition, the interaction of HIF-1α with its interacting proteins may be regulated by post-translational modification of one or both proteins, which may occur in a cell-type or stimulus-specific manner. Finally, it should be noted that many HIF-1α-interacting proteins are the products of HIF-1 target genes and participate in feed-forward or feedback loops that serve to amplify or extinguish cellular responses to hypoxia [163].

Acknowledgments

This article is dedicated in memory of Professor Lorenz Poellinger. Proteomics studies in the author’s laboratory were previously supported by Contract No. HHS-N268201000032C from the National Heart, Blood, Lung Institute. Current research in the author’s laboratory is supported by grants from the American Cancer Society (RP-16–239-06-COUN), Armstrong Family Foundation, Cindy Rosencrans Foundation, Department of Defense Breast Cancer Research Program (W81XWH-12-1-0464), and the National Heart, Blood, Lung Institute (P01-HL090554, R01-HL126514). G.L.S. is an American Cancer Society Research Professor and the C. Michael Armstrong Professor at the Johns Hopkins University School of Medicine.

References

  • 1.Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270:1230–1237. doi: 10.1074/jbc.270.3.1230. [DOI] [PubMed] [Google Scholar]
  • 2.Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix heterodimer that is regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92:5510–5514. doi: 10.1073/pnas.92.12.5510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Jeong JW, Bae MK, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell. 2002;111:709–720. doi: 10.1016/s0092-8674(02)01085-1. [DOI] [PubMed] [Google Scholar]
  • 4.Lim JH, Chun YS, Park JW. Hypoxia-inducible factor 1α obstructs a Wnt signaling pathway by inhibiting the hARD1-mediated activation of β-catenin. Cancer Res. 2008;88:5177–5184. doi: 10.1158/0008-5472.CAN-07-6234. [DOI] [PubMed] [Google Scholar]
  • 5.Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA. 1998;95:5474–5479. doi: 10.1073/pnas.95.10.5474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Takahata S, Sogawa K, Kobayashi A, Ema M, Mimura J, Ozaki N, Fujii-Kuriyama Y. Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1α, HLF, and clock. Biochem Biophys Res Commun. 1998;248:789–794. doi: 10.1006/bbrc.1998.9012. [DOI] [PubMed] [Google Scholar]
  • 7.Hogenesch JB, Gu YZ, Moran SM, Shimomura K, Radcliffe LA, Takahashi JS, Bradfield CA. The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. J Neurosci. 2000;20:RC83. doi: 10.1523/JNEUROSCI.20-13-j0002.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Shenoy SK, Han S, Zhao YL, Hara MR, Oliver T, Cao Y, Dewhirst MW. β-arrestin1 mediates growth of breast cancer cells by facilitating HIF-1-dependent VEGF expression. Oncogene. 2012;31:282–292. doi: 10.1038/onc.2011.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Zecchini V, Madhu B, Russell R, Pertega-Gomes N, Warren A, Gaude E, Borlido J, Stark R, Ireland-Zecchini H, Rao R, Scott H, Boren J, Massie C, Asim M, Brindle K, Griffiths J, Frezza C, Neal DE, Mills IG. Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer. EMBO J. 2014;33:1365–1382. doi: 10.15252/embj.201386874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Lim JH, Park JW, Kim SJ, Park SK, Johnson RS, Chun YS. ATP6V0C competes with von Hippel-Lindau protein in hypoxia-inducible factor 1α (HIF-1α) binding and mediates HIF-1α expression by bafilomycin A1. Mol Pharm. 2007;71:942–948. doi: 10.1124/mol.106.030296. [DOI] [PubMed] [Google Scholar]
  • 11.Trisciuoglio D, Gabellini C, Desideri M, Ziparo E, Zupi G, Del Bufalo D. Bcl-2 regulates HIF-1α protein stabilization in hypoxic melanoma cells via the molecular chaperone HSP90. PLoS One. 2010;5:e11772. doi: 10.1371/journal.pone.0011772. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 12.Montagner M, Enzo E, Forcato M, Zanconato F, Rampazzo E, Basso G, Leo G, Rosato A, Bicciato S, Cordenonsi M, Piccolo S. SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors. Nature. 2012;487:380–384. doi: 10.1038/nature11207. [DOI] [PubMed] [Google Scholar]
  • 13.Sena JA, Wang L, Hu C. BRG1 and BRM chromatin-remodeling complexes regulate the hypoxia response by acting as coactivators for a subset of hypoxia-inducible transcription factor target genes. Mol Cell Biol. 2013;33:3849–3863. doi: 10.1128/MCB.00731-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Carrero P, Okamoto K, Coumilleau P, O’Brien S, Tanaka H, Poellinger L. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1α. Mol Cell Biol. 2000;20:402–415. doi: 10.1128/mcb.20.1.402-415.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y. Molecular mechanisms of transcription activation by HLF and HIF1α in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J. 1999;18:1905–1914. doi: 10.1093/emboj/18.7.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Ruas JL, Berchner-Pfannschmidt U, Malik S, Gradin K, Fandrey J, Roeder RG, Pereira T, Poellinger L. Complex regulation of the transactivation function of hypoxia-inducible factor 1α by direct interaction with two distinct domains of the CREB-binding protein/p300. J Biol Chem. 2010;285:2601–2609. doi: 10.1074/jbc.M109.021824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor 1α. EMBO J. 1998;17:6573–6586. doi: 10.1093/emboj/17.22.6573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Li J, Xu Y, Long XD, Wang W, Jiao HK, Mei Z, Yin QQ, Ma LN, Zhou AW, Wang LS, Yao M, Xia Q, Chen GQ. Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell. 2014;25:118–131. doi: 10.1016/j.ccr.2013.12.008. [DOI] [PubMed] [Google Scholar]
  • 19.Jiang Y, Xue ZH, Shen WZ, Du KM, Yan H, Yu Y, Peng ZG, Song MG, Tong JH, Chen Z, Huang Y, Lubbert M, Chen GQ. Desferrioxamine induces leukemic cell differentiation potentially by hypoxia-inducible factor 1α that augments transcriptional activity of CCAAT/enhancer-binding protein-α. Leukemia. 2005;19:1239–1247. doi: 10.1038/sj.leu.2403734. [DOI] [PubMed] [Google Scholar]
  • 20.Yang L, Jiang Y, Wu SF, Zhou MY, Wu YL, Chen GQ. CCAAT/enhancer-binding protein α antagonizes transcriptional activity of hypoxia-inducible factor 1α with direct protein-protein interaction. Carcinogenesis. 2008;29:291–298. doi: 10.1093/carcin/bgm262. [DOI] [PubMed] [Google Scholar]
  • 21.Hubbi ME, Kshitiz, Gilkes DM, Rey S, Wong CC, Luo W, Kim DH, Dang CV, Levchenko A, Semenza GL. A non-transcriptional role for HIF-1α as a direct inhibitor of DNA replication. Sci Signal. 2013;6:ra10. doi: 10.1126/scisignal.2003417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Warfel NA, Dollof NG, Dicker DT, Malysz J, El-Deiry WS. CDK1 stabilizes HIF-1α via direct phosphorylation of Ser668 to promote tumor growth. Cell Cycle. 2013;12:3689–3701. doi: 10.4161/cc.26930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Hubbi ME, Gilkes DM, Hu H, Kshitiz, Ahmed I, Semenza GL. Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1α to promote cell cycle progression. Proc Natl Acad Sci USA. 2014;111:E3325–E3334. doi: 10.1073/pnas.1412840111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Antoniou X, Gassmann M, Ogunshola OO. Cdk5 interacts with HIF-1α in neurons: a new hypoxic signaling mechanism*. Brain Res. 2011;1381:1–10. doi: 10.1016/j.brainres.2010.10.071. [DOI] [PubMed] [Google Scholar]
  • 25.Herzog J, Ehrlich SM, Pfitzer L, Liebl J, Frohlich T, Arnold GJ, Mikults W, Halder C, Vollmar AM, Zahler S. Cyclin-dependent kinase 5 stabilizes hypoxia-inducible factor 1α: a novel approach for inhibiting angiogenesis in hepatocellular carcinoma. Oncotarget. 2016;7:27108–27121. doi: 10.18632/oncotarget.8342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Galbraith MD, Allen MA, Bensard CL, Wang X, Schwinn MK, Qin B, Long HW, Daniels DL, Hahn WC, Dowell RD, Espinosa JM. HIF-1α employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell. 2013;153:1327–1339. doi: 10.1016/j.cell.2013.04.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Yu B, Miao ZH, Jiang Y, Li MH, Yang N, Li T, Ding J. c-Jun protects hypoxia-inducible factor 1α from degradation via its oxygen-dependent degradation domain in a nontranscriptional manner. Cancer Res. 2009;69:7704–7712. doi: 10.1158/0008-5472.CAN-09-0808. [DOI] [PubMed] [Google Scholar]
  • 28.Yu B, Li MH, Wang W, Wang YQ, Jiang Y, Yang SP, Yue JM, Ding J, Miao ZH. Pseudolaric acid B-driven phosphorylation of c-Jun impairs its role in stabilizing HIF-1α: an novel function-converter model. J Mol Med. 2012;90:971–981. doi: 10.1007/s00109-012-0865-4. [DOI] [PubMed] [Google Scholar]
  • 29.Kourti M, Ikonomou G, Giakoumakis NN, Rapsomaniki MA, Landegren U, Siniossoglou S, Lygerou Z, Simos G, Mylonis I. CK1δ restrains lipin-1 induction, lipid droplet formation and cell proliferation under hypoxia by reducing HIF-1α/ ARNT complex formation. Cell Signal. 2015;27:1129–1140. doi: 10.1016/j.cellsig.2015.02.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.van de Sluis B, Groot AJ, Vermeulen JF, van der Wal E, van Diest PJ, Wijmenga C, Klomp LW, Cho KR, Voojis M. COMMD1 promotes pVHL and O2-indpendent-indpendent proteolysis of HIF-1α via HSP90/70. PLoSOne. 2009;4:e7332. doi: 10.1371/journal.pone.0007332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.van de Sluis B, Mao X, Zhai Y, Groot AJ, Vermeulen JF, van der Wall E, van Diest PJ, Hofker MH, Wijmenga C, Klomp LW, Cho KR, Fearon ER, Voojis M, Burstein E. COMMD1 disrupts HIF-1α/β dimerization and inhibits human tumor cell invasion. J Clin Invest. 2010;120:2119–2130. doi: 10.1172/JCI40583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Mylonis I, Chachami G, Paraskeva E, Simos G. Atypical CRM1-dependent nuclear export signal mediates regulation of hypoxia-inducible factor 1α by MAPK. J Biol Chem. 2008;283:27620–27627. doi: 10.1074/jbc.M803081200. [DOI] [PubMed] [Google Scholar]
  • 33.Kaidi A, Williams AC, Paraskeva C. Interaction between β-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol. 2007;9:210–217. doi: 10.1038/ncb1534. [DOI] [PubMed] [Google Scholar]
  • 34.Hu J, Sun T, Wang H, Chen Z, Wang S, Yuan L, Liu T, Li HR, Wang P, Feng Y, Wang Q, McLendon RE, Friedman AH, Keir ST, Bigner DD, Rathmell J, Fu XD, Li QJ, Wang H, Wang XF. miR-215 is induced post-transcriptionally via HIF-Drosha complex and mediates glioma-initiating cell adaptation to hypoxia by targeting KDM1B. Cancer Cell. 2016;29:49–60. doi: 10.1016/j.ccell.2015.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Weijts BG, Bakker WJ, Cornelissen PW, Liang KH, Schaftenaar FH, Westendorp B, de Wolf CA, Paciejewska M, Scheele CL, Kent L, Leone G, Schulte-Merker S, De Bruin A. E2F7 and E2F8 promote angiogenesis through transcriptional activation of VEGFA in cooperation with HIF-1. EMBO J. 2012;31:3871–3884. doi: 10.1038/emboj.2012.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Chen Z, Liu X, Mei Z, Wang Z, Xiao W. EAF2 suppresses hypoxia-inducible factor 1α transcriptional activity by disrupting its interaction with coactivator CBP/p300. Mol Cell Biol. 2014;34:1085–1099. doi: 10.1128/MCB.00718-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Cho J, Kim D, Lee S, Lee Y. Cobalt chloride-induced estrogen receptor α down-regulation involves hypoxia-inducible factor 1α in MCF-7 human breast cancer cells. Mol Endocrinol. 2005;19:1191–1199. doi: 10.1210/me.2004-0162. [DOI] [PubMed] [Google Scholar]
  • 38.Ao A, Wang H, Kamarajugadda S, Lu J. Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc Natl Acad Sci USA. 2008;105:7821–7826. doi: 10.1073/pnas.0711677105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Zou C, Yu S, Xu Z, Wu D, Ng CF, Yao X, Yew DT, Vanacker JM, Chan FL. ERRα augments HIF-1 signaling by directly interacting with HIF-1α in normoxic and hypoxic prostate cancer cells. J Pathol. 2014;233:61–73. doi: 10.1002/path.4329. [DOI] [PubMed] [Google Scholar]
  • 40.Wollenick K, Hu J, Kristiansen G, Schraml P, Rehrauer H, Berchner-Pfannschmidt U, Fandrey J, Wenger RH, Stiehl DP. Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling. Nucleic Acids Res. 2012;40:1928–1943. doi: 10.1093/nar/gkr978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Li B, Qiu B, Lee DS, Walton ZE, Ochocki JD, Mathew LK, Mancuso A, Gade TP, Keith B, Nissim I, Simon MC. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature. 2014;513:251–255. doi: 10.1038/nature13557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Hubbi ME, Gilkes DM, Baek JH, Semenza GL. Four-and-a-half LIM domain proteins inhibit transactivation by hypoxia-inducible factor 1. J Biol Chem. 2012;287:6139–6149. doi: 10.1074/jbc.M111.278630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001;15:2675–2686. doi: 10.1101/gad.924501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Zheng X, Zhou AX, Rouhi P, Uramoto H, Boren J, Cao Y, Pereira T, Akyurek LM, Poellinger L. Hypoxia-induced and calpain-dependent cleavage of filamin A regulates the hypoxic response. Proc Natl Acad Sci USA. 2014;111:256–2565. doi: 10.1073/pnas.1320815111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Qi J, Nakayama K, Cardiff RD, Borowsky AD, Kaul K, Williams R, Krajewski S, Mercola D, Carpenter PM, Bowtell D, Ronai ZA. Siah2-dependent concerted activity of HIF and FOXA2 regulates formation of neu-roendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell. 2010;18:23–38. doi: 10.1016/j.ccr.2010.05.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pardoll DM, Pan F. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell. 2011;146:772–784. doi: 10.1016/j.cell.2011.07.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Sun YY, Wang CY, Hsu MF, Juan SH, Chang CY, Chou CM, Yang LY, Hung KS, Xu J, Lee YH, Hsu CY. Glucocorticoid protection of oligodendro-cytes against excitotoxin involving hypoxia-inducible factor 1α in a cell-type-specific manner. J Neurosci. 2010;30:9621–9630. doi: 10.1523/JNEUROSCI.2295-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Kelly TJ, Souza AL, Clish CB, Puigserver P. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1α stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase-like. Mol Cell Biol. 2011;21:2696–2706. doi: 10.1128/MCB.01242-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Flugel D, Gorlach A, Michiels C, Kietzmann T. Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1α and mediates its destabilization in a VHL-independent manner. Mol Cell Biol. 2007;27:3253–3265. doi: 10.1128/MCB.00015-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Koh MY, Darnay BG, Powis G. Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1α leading to its oxygen-independent degradation. Mol Cell Biol. 2008;28:7081–7095. doi: 10.1128/MCB.00773-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Koh MY, Lemos R, Jr, Liu X, Powis G. The hypoxia-associated factor switches cells from HIF-1α– to HIF-2α–dependent signaling promoting stem cell characteristics, aggressive tumor growth, and invasion. Cancer Res. 2011;71:4015–4027. doi: 10.1158/0008-5472.CAN-10-4142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Moon EJ, Jeong CH, Jeong JW, Kim KR, Yu DY, Murakami S, Kim CW, Kim KW. Hepatitis B virus X protein induces angiogenesis by stabilizing hypoxia-inducible factor 1α. FASEB J. 2004;18:382–384. doi: 10.1096/fj.03-0153fje. [DOI] [PubMed] [Google Scholar]
  • 53.Kim SH, Jeong JW, Park JA, Lee JW, Seo JH, Jung BK, Bae MK, Kim KW. Regulation of the HIF-1α stability by histone deacetylases. Oncol Rep. 2007;17:647–651. [PubMed] [Google Scholar]
  • 54.Qian DZ, Kachhap SK, Collins SJ, Verheul HM, Carducci MA, Atadja P, Pili R. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1α. Cancer Res. 2006;66:8814–8821. doi: 10.1158/0008-5472.CAN-05-4598. [DOI] [PubMed] [Google Scholar]
  • 55.Geng H, Harvey CT, Pittsenbarger J, Liu Q, Beer TM, Xue C, Qian DZ. HDAC4 protein regulates HIF-1α protein lysine acetylation and cancer cell response to hypoxia. J Biol Chem. 2011;286:38095–38102. doi: 10.1074/jbc.M111.257055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kato H, Tamamizu-Kato S, Shibasaki F. Histone deacetylase 7 associates with hypoxia-inducible factor 1α and increases transcriptional activity. J Biol Chem. 2004;279:41966–41974. doi: 10.1074/jbc.M406320200. [DOI] [PubMed] [Google Scholar]
  • 57.LaRusch GA, Jackson MW, Dunbar JD, Warren RS, Donner DB, Mayo LD. Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction between hypoxia-inducible factor 1α and Hdm2. Cancer Res. 2007;67:450–454. doi: 10.1158/0008-5472.CAN-06-2710. [DOI] [PubMed] [Google Scholar]
  • 58.Yeh IJ, Ogba N, Bensigner H, Welford SM, Montano MM. HEXIM1 down-regulates hypoxia-inducible factor 1α protein stability. Biochem J. 2013;456:195–204. doi: 10.1042/BJ20130592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Shin YC, Joo CH, Gack MU, Lee HR, Jung JU. Kaposi’s sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor 1α to induce vascular endothelial growth factor expression. Cancer Res. 2008;68:1751–1759. doi: 10.1158/0008-5472.CAN-07-2766. [DOI] [PubMed] [Google Scholar]
  • 60.Zhang W, Tsuchiya T, Yasukochi Y. Transitional change in interaction between HIF-1 and HNF-4 in response to hypoxia. J Hum Genet. 1999;44:293–299. doi: 10.1007/s100380050163. [DOI] [PubMed] [Google Scholar]
  • 61.Bodily JM, Mehta KP, Laimins LA. Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res. 2011;71:1187–1195. doi: 10.1158/0008-5472.CAN-10-2626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Hubbi ME, Hu H, Kshitiz, Ahmed I, Levchenko A, Semenza GL. Chaperone-mediated autophagy targets hypoxia-inducible factor 1α (HIF-1α) for lysosomal degradation. J Biol Chem. 2013;288:10703–10714. doi: 10.1074/jbc.M112.414771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Ferreira JV, Fofo H, Bejarano E, Bento CF, Ramalho JS, Girao H, Pereira P. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autop-hagy. Autophagy. 2013;9:1349–1366. doi: 10.4161/auto.25190. [DOI] [PubMed] [Google Scholar]
  • 64.Luo W, Zhong J, Chang R, Hu H, Pandey A, Semenza GL. Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF) 1α but not HIF-2α. J Biol Chem. 2010;285:3651–3663. doi: 10.1074/jbc.M109.068577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Gradin K, McGuire J, Wenger RH, Kvietikova I, Whitelaw ML, Toftgard R, Tora L, Gassmann M, Poellinger L. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol Cell Biol. 1996;16:5221–5231. doi: 10.1128/mcb.16.10.5221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Chachami G, Paraskeva E, Mingot JM, Braliou GG, Gorlich D, Simos G. Transport of hypoxia-inducible factor HIF–1α into the nucleus involves importins 4 and 7. Biochem Biophys Res Commun. 2009;390:235–240. doi: 10.1016/j.bbrc.2009.09.093. [DOI] [PubMed] [Google Scholar]
  • 67.Bigot N, Guerillon C, Loisel S, Bertheuil N, Sensebe L, Tarte K, Pedeux R. ING1b negative regulates HIF–1α protein levels in adipose-derived stromal cells by a SUMOylation-dependent mechanism. Cell Death Dis. 2015;6:e1612. doi: 10.1038/cddis.2014.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Tendler DS, Bao C, Wang T, Huang EL, Ratovitski EA, Pardoll DA, Lowenstein CJ. Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis. Cancer Res. 2001;61:3682–3688. [PubMed] [Google Scholar]
  • 69.Bae MK, Ahn MY, Jeong JW, Bae MH, Lee YM, Bae SK, Park JW, Kim KR, Kim KW. Jab1 interacts directly with HIF–1α and regulates its stability. J Biol Chem. 2002;277:9–12. doi: 10.1074/jbc.C100442200. [DOI] [PubMed] [Google Scholar]
  • 70.Luo W, Chang R, Zhong J, Pandey A, Semenza GL. Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci USA. 2012;109:E3367–E3376. doi: 10.1073/pnas.1217394109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Perez-Perri JI, Dengler VL, Audetat KA, Pandey A, Bonner EA, Urh M, Mendez J, Daniels DL, Wappner P, Galbraith MD, Espinosa JM. The TIP60 complex is a conserved coactivator of HIF1A. Cell Rep. 2016;16:37–47. doi: 10.1016/j.celrep.2016.05.082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Qin Y, Zhu W, Xu W, Zhang B, Shi S, Ji S, Liu J, Long J, Xu J, Yu X. LSD1 sustains pancreatic cancer growth via maintaining HIF–1α–dependent glycolytic process. Cancer Lett. 2014;347:225–232. doi: 10.1016/j.canlet.2014.02.013. [DOI] [PubMed] [Google Scholar]
  • 73.Kim Y, Nam HJ, Lee J, Park DY, Kim C, Yu YS, Kim D, Park SW, Bhin J, Hwang D, Lee H, Koh GY, Baek SH. Methylation-dependent regulation of HIF–1α stability restricts retinal and tumor angiogenesis. Nat Commun. 2016;7:10347. doi: 10.1038/ncomms10347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Cai Q, Murakami M, Si H, Robertson ES. A potential α-helix motif in theamino terminus of LANA encoded by Kaposi’s sarcoma-associated herpesvirus is critical for nuclear accumulation of HIF—1α in normoxia. doi: 10.1128/JVI.00611-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Shin YC, Joo CH, Gack MU, Lee HR, Jung JU. Kaposi’s sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor 1α to induce vascular endothelial growth factor expression. Cancer Res. 2008;68:1751–1759. doi: 10.1158/0008-5472.CAN-07-2766. [DOI] [PubMed] [Google Scholar]
  • 76.Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007;11:335–347. doi: 10.1016/j.ccr.2007.02.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Hubbi ME, Luo W, Baek JH, Semenza GL. MCM proteins are negative regulators of hypoxia-inducible factor 1. Mol Cell. 2011;42:700–712. doi: 10.1016/j.molcel.2011.03.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Lyberopoulou A, Mylonis I, Papachristos G, Sagris D, Kalousi A, Befani C, Liakos P, Simos G, Georgatsou E. MgcRacGAP, a cytoskeleton regulator, inhibits HIF-1 transcriptional activity by blocking its dimerization. Biochim Biophys Acta. 2013;1833:1378–1387. doi: 10.1016/j.bbamcr.2013.02.025. [DOI] [PubMed] [Google Scholar]
  • 79.Yoo YG, Kong G, Lee MO. Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor 1α by recruiting histone deacetylase 1. EMBO J. 2006;25:1231–1241. doi: 10.1038/sj.emboj.7601025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhakrishnan P, Liu X, Mehla K, Brown RB, Caffrey T, Yu F, Johnson KR, Powers R, Hollingsworth MA, Singh PK. MUC1 mucin stabilizes hypoxia-inducible factor 1α and activates to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci USA. 2012;109:13787–13792. doi: 10.1073/pnas.1203339109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE. HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J. 2004;23:1946–1956. doi: 10.1038/sj.emboj.7600196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Kuo Y, Wu H, Hung J, Chou T, Teng S, Wu K. Nijmegen breakage syndrome protein 1 (NBS1) modulates hypoxia-inducible factor 1α (HIF-1α) stability and promotes in vitro migration and invasion under ionizing radiation. Int J Biochem Cell Biol. 2015;64:229–238. doi: 10.1016/j.biocel.2015.04.015. [DOI] [PubMed] [Google Scholar]
  • 83.Moon HE, Ahn MY, Park JA, Min KJ, Kwon YW, Kim KW. Negative regulation of hypoxia-inducible factor 1α by necdin. FEBS Lett. 2005;579:3797–3801. doi: 10.1016/j.febslet.2005.05.072. [DOI] [PubMed] [Google Scholar]
  • 84.Nowicka AM, Hauselmann I, Borsig L, Bolduan S, Schindler M, Schramer P, Heikenwalder M, Moch H. A novel pVHL-independent but NEMO-driven pathway in renal cancer promotes HIF stabilization. Oncogene. 2016;35:3125–3138. doi: 10.1038/onc.2015.400. [DOI] [PubMed] [Google Scholar]
  • 85.Gustavsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9:617–628. doi: 10.1016/j.devcel.2005.09.010. [DOI] [PubMed] [Google Scholar]
  • 86.Shareef MM, Udayakumar TS, Sinha VK, Saleem SM, Griggs WW. Interaction of HIF-1α and Notch3 is required for the expression of carbonic anhydrase 9 in breast carcinoma cells. Genes Cancer. 2013;4:513–523. doi: 10.1177/1947601913481670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Oh ET, Kim JW, Kim JM, Kim SJ, Lee JS, Hong SS, Goodwin J, Ruthenborg RJ, Jung MG, Lee HJ, Lee CH, Park ES, Kim C, Park HJ. NQO1 inhibits proteasome-mediated degradation of HIF-1α. Nat Commun. 2016;7:13593. doi: 10.1038/ncomms13593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Baek JH, Mahon PC, Oh J, Kelly B, Krishnamachary B, Pearson M, Chan DA, Giaccia AJ, Semenza GL. OS-9 interacts with hypoxia-inducible factor 1α and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1α. Mol Cell. 2005;17:503–512. doi: 10.1016/j.molcel.2005.01.011. [DOI] [PubMed] [Google Scholar]
  • 89.Bremm A, Moniz S, Mader J, Rocha S, Komander D. Cezanne (OTUD7B) regulates HIF-1α homeostasis in a proteasome-independent manner. EMBO Rep. 2014;15:1268–1277. doi: 10.15252/embr.201438850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Fatyol K, Szalay AA. The p14ARF tumor suppressor protein facilitates nucleolar sequestration of hypoxia-inducible factor 1α (HIF-1α) and inhibits HIF-1-mediated transcription. J Biol Chem. 2001;276:28421–28429. doi: 10.1074/jbc.M102847200. [DOI] [PubMed] [Google Scholar]
  • 91.Zhang J, Lu A, Li L, Yue J, Lu Y. p16 modulates VEGF expression via its interaction with HIF-1α in breast cancer cells. Cancer Invest. 2010;28:588–597. doi: 10.3109/07357900903286941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Blagosklonny MV, An WG, Romanova LY, Trepel J, Fojo T, Neckers L. p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem. 1998;273:11995–11998. doi: 10.1074/jbc.273.20.11995. [DOI] [PubMed] [Google Scholar]
  • 93.An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature. 1998;392:405–408. doi: 10.1038/32925. [DOI] [PubMed] [Google Scholar]
  • 94.Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev. 2000;14:34–44. [PMC free article] [PubMed] [Google Scholar]
  • 95.Arany Z, Huang LE, Eckner R, Bhattacharya R, Jiang C, Goldberg MA, Bunn HF, Livingston DM. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA. 1996;93:12969–12973. doi: 10.1073/pnas.93.23.12969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Bhattacharya S, Michels CL, Leung M, Arany ZP, Kung AL, Livingston DM. Functional role of p35srj, a novel p300/CBP binding protein, during transacti-vation by HIF-1. Genes Dev. 1999;13:64–75. doi: 10.1101/gad.13.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Elser M, Borsig L, Hassa PO, Erener S, Messner S, Valovka T, Keller S, Gassmann M, Hottiger MO. Poly(ADP-ribose) polymerase 1 promotes tumor cell survival by coactivating hypoxia-inducible factor 1-dependent gene expression. Mol Cancer Res. 2008;6:282–290. doi: 10.1158/1541-7786.MCR-07-0377. [DOI] [PubMed] [Google Scholar]
  • 98.Gonzalez-Flores A, Aguilar-Quesada R, Siles E, Pozo S, Rodriguez-Lara MI, Lopez-Jimenez L, Lopez-Rodriguez M, Peralta-Leal A, Villar D, Martin-Oliva D, del Peso L, Berra E, Oliver FJ. Interaction between PARP-1 and HIF-2α in the hypoxic response. Oncogene. 2014;33:891–898. doi: 10.1038/onc.2013.9. [DOI] [PubMed] [Google Scholar]
  • 99.Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell. 2010;38:864–878. doi: 10.1016/j.molcel.2010.05.023. [DOI] [PubMed] [Google Scholar]
  • 100.Chilov D, Hofer T, Bauer C, Wenger RH, Gassmann M. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 2001;15:2613–2622. doi: 10.1096/fj.01-0092com. [DOI] [PubMed] [Google Scholar]
  • 101.Koyanagi S, Kuramoto Y, Kangawa H, Aramaki H, Ohdo S, Soeda S, Shimeno H. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003;63:7277–7283. [PubMed] [Google Scholar]
  • 102.Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107:43–54. doi: 10.1016/s0092-8674(01)00507-4. [DOI] [PubMed] [Google Scholar]
  • 103.Bruick R, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001;294:1337–1340. doi: 10.1126/science.1066373. [DOI] [PubMed] [Google Scholar]
  • 104.Kang X, Li J, Zou Y, Yi J, Zhang H, Cao M, Yeh ET, Cheng J. PIASy stimulates HIF-1α SUMOylation and negatively regulates HIF-1α activity in response to hypoxia. Oncogene. 2010;29:5568–5578. doi: 10.1038/onc.2010.297. [DOI] [PubMed] [Google Scholar]
  • 105.Han HJ, Kwon N, Choi MA, Jung KO, Piao JY, Ngo HK, Kim SJ, Kim DH, Chung JK, Cha YN, Youn H, Choi BY, Min SH, Surh YJ. Peptidyl prolyl isomerase PIN1 directly binds to and stabilizes hypoxia-inducible factor 1α. PLoS One. 2016;11:e0147038. doi: 10.1371/journal.pone.0147038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145:732–744. doi: 10.1016/j.cell.2011.03.054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Park MH, Choi KY, Jung Y, Min DS. Phospholipase D1 protein coordinates dynamic assembly of HIF-1α-PHD-VHL to regulate HIF-1α stability. Oncotarget. 2014;5:11857–11872. doi: 10.18632/oncotarget.2613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Xu D, Yao Y, Lu L, Costa M, Dai W. Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1α. J Biol Chem. 2010;285:38944–38950. doi: 10.1074/jbc.M110.160325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Lee JS, Kim Y, Bhin J, Shin HJ, Nam HJ, Lee SH, Yoon JB, Binda O, Gozani O, Hwang D, Baek SH. Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc Natl Acad Sci USA. 2011;108:13510–13515. doi: 10.1073/pnas.1106106108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Luo W, Chen I, Chen Y, Alkam D, Wang Y, Semenza GL. PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia. Oncotarget. 2016;7:6379–6397. doi: 10.18632/oncotarget.7142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Bullen JW, Tchernyshyov I, Holewinski R, DeVine L, Wu F, Venkatraman V, Kass DL, Cole RN, van Eyk J, Semenza GL. Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci Signal. 2016;9:ra56. doi: 10.1126/scisignal.aaf0583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Villa JC, Chiu D, Brandes AH, Escocia FE, Villa CH, Maguire WF, Hu CJ, De Stanchina E, Simon MC, Sisodia SS, Scheinberg DA, Li YM. Nontranscriptional role of HIF-1α in activation of γ-secretase and notch signaling in breast cancer. Cell Rep. 2014;8:1077–1092. doi: 10.1016/j.celrep.2014.07.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Cho S, Choi YJ, Kim JM, Jeong ST, Kim JH, Kim SH, Ryu SE. Binding and regulation of HIF-1α by a subunit of the proteasome complex, PSMA7. FEBS Lett. 2001;498:62–66. doi: 10.1016/s0014-5793(01)02499-1. [DOI] [PubMed] [Google Scholar]
  • 114.Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α. Mol Cell. 2007;25:207–217. doi: 10.1016/j.molcel.2007.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Land SC, Tee AR. hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem. 2007;282:20534–20543. doi: 10.1074/jbc.M611782200. [DOI] [PubMed] [Google Scholar]
  • 116.Budde A, Schneiderhan-Marra N, Petersen G, Brune B. Retinoblastoma susceptibility gene product pRB activates hypoxia-inducible factor 1 (HIF-1) Oncogene. 2005;24:1802–1808. doi: 10.1038/sj.onc.1208369. [DOI] [PubMed] [Google Scholar]
  • 117.Lee JS, Kim Y, Kim IS, Kim B, Choi HJ, Lee JM, Shin HJ, Kim JH, Kim JY, Seo SB, Lee H, Binda O, Gozani O, Semenza GL, Kim M, Kim KI, Hwang D, Baek SH. Negative regulation of hypoxic responses via induced Reptin methylation. Mol Cell. 2010;39:71–85. doi: 10.1016/j.molcel.2010.06.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Zhang CS, Liu Q, Li M, Lin SY, Peng Y, Wu D, Li TY, Fu Q, Jia W, Wang X, Ma T, Zong Y, Cui J, Pu C, Lian G, Guo H, Ye Z, Lin SC. RHOBTB3 promotes proteasomal degradation of HIFα through facilitating hydroxylation and suppresses the Warburg effect. Cell Res. 2015;25:1025–1042. doi: 10.1038/cr.2015.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Yue X, Lin X, Yang T, Yang X, Yi X, Jiang X, Li X, Guo J, Dai Y, Shi J, Wei L, Youker KA, Torre-Amione G, Yu Y, Andrade KC, Chang J. Rnd3/RhoE modulates hypoxia-inducible factor 1α/vascular endothelial growth factor signaling by stabilizing hypoxia-inducible factor 1α and regulates responsive cardiac angiogenesis. Hypertension. 2016;67:597–605. doi: 10.1161/HYPERTENSIONAHA.115.06412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Chang HY, Liu HS, Lai MD, Tsai YS, Tzai TS, Cheng HL, Chow NH. Hypoxia promotes nuclear translocation and transcriptional function in the oncogenic tyrosine kinase RON. Cancer Res. 2014;74:4549–4562. doi: 10.1158/0008-5472.CAN-13-3730. [DOI] [PubMed] [Google Scholar]
  • 121.Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1α during hypoxia. Cell. 2007;131:309–323. doi: 10.1016/j.cell.2007.07.044. [DOI] [PubMed] [Google Scholar]
  • 122.Gerez J, Tedesco L, Bonfiglio JJ, Fuertes M, Barontini M, Silberstein S, Wu Y, Renner U, Paez-Pereda M, Holsboer F, Stalla GK, Artz E. RSUME inhibits VHL and regulates its tumor suppressor function. Oncogene. 2015;34:4855–4866. doi: 10.1038/onc.2014.407. [DOI] [PubMed] [Google Scholar]
  • 123.Peng ZG, Zhou MY, Qiu JH, Wang LS, Liao SH, Dong S, Chen GQ. Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor 1α. Oncogene. 2008;27:839–847. doi: 10.1038/sj.onc.1210676. [DOI] [PubMed] [Google Scholar]
  • 124.Lee SH, Che X, Jeong JH, Choi JY, Lee YJ, Lee YH, Bae SC, Lee YM. Runx2 protein stabilizes hypoxia-inducible factor 1α through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. J Biol Chem. 2012;287:14760–14771. doi: 10.1074/jbc.M112.340232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Lee SH, Bae SC, Kim KW, Lee YM. RUNX3 inhibits hypoxia-inducible factor 1α protein stability by interacting with prolyl hydroxylases in gastric cancer cells. Oncogene. 2014;33:1458–1467. doi: 10.1038/onc.2013.76. [DOI] [PubMed] [Google Scholar]
  • 126.Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential for stabilization of HIF-1α during hypoxia. Cell. 2007;131:584–595. doi: 10.1016/j.cell.2007.08.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Amir S, Wang R, Matzkin H, Simons JW, Mabjeesh NJ. MSF-A interacts with hypoxia-inducible factor 1α and augments hypoxia-inducible factor transcriptional activation to affect tumorigenicity and angiogenesis. Cancer Res. 2006;66:856–866. doi: 10.1158/0008-5472.CAN-05-2738. [DOI] [PubMed] [Google Scholar]
  • 128.Amir S, Wang R, Simons JW, Mabjeesh NJ. SEPT9_v1 up-regulates hypoxia-inducible factor 1 by preventing its RACK1-mediated degradation. J Biol Chem. 2009;284:11142–11151. doi: 10.1074/jbc.M808348200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Liu X, Chen Z, Xu C, Leng X, Cao H, Ouyang G, Xiao W. Repression of hypoxia-inducible factor 1α signaling by Set7-mediated methylation. Nucleic Acids Res. 2015;43:5081–5098. doi: 10.1093/nar/gkv379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Laemmle A, Lechleiter A, Roh V, Schwarz C, Portmann S, Furer C, Keogh A, Tschan MP, Cardinas D, Vorburger SA, Stroka D. Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1α protein under hypoxic conditions. PLoS One. 2012;7:e33433. doi: 10.1371/journal.pone.0033433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Seo KS, Park JH, Heo JY, Jing K, Han J, Min KN, Kim C, Koh GY, Lim K, Kang GY, Lee JU, Kim YH, Shong M, Kwak TH, Kweon GR. SIRT2 regulates tumor hypoxia response by promoting HIF-1α hydroxylation. Oncogene. 2015;34:1354–1362. doi: 10.1038/onc.2014.76. [DOI] [PubMed] [Google Scholar]
  • 132.Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R. The histone deacetylase Sirt6 regulates glucose homeostasis via HIF-1α. Cell. 2010;140:280–293. doi: 10.1016/j.cell.2009.12.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Hubbi ME, Hu H, Kshitiz, Gilkes DM, Semenza GL. Sirtuin 7 inhibits the activity of hypoxia-inducible factors. J Biol Chem. 2013;288:20768–20775. doi: 10.1074/jbc.M113.476903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, Bernabeu C. Synergistic cooperation between hypoxia and transforming growth factor β pathways on human vascular endothelial growth factor gene expression. J Biol Chem. 2001;276:34486–34494. doi: 10.1074/jbc.M104536200. [DOI] [PubMed] [Google Scholar]
  • 135.Koshiji M, To KK, Hammer S, Kumamoto K, Harris AL, Modrich P, Huang LE. HIF-1α induces genetic instability by transcriptionally downregu-lating MutSα expression. Mol Cell. 2005;17:793–803. doi: 10.1016/j.molcel.2005.02.015. [DOI] [PubMed] [Google Scholar]
  • 136.Hicks KC, Patel TB. Sprouty2 protein regulates hypoxia-inducible factor α (HIF-α) protein levels and transcription of HIF-α responsive genes. J Biol Chem. 2016;291:16787–16801. doi: 10.1074/jbc.M116.714139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Baek JH, Liu YV, McDonald KR, Wesley JB, Zhang H, Semenza GL. Spermidine/spermine N1 acetyltransferase 1 binds to hypoxia-inducible factor 1α (HIF-1α) and RACK1 and promotes ubiquitination and degradation of HIF-1α. J Biol Chem. 2007;282:33358–33366. doi: 10.1074/jbc.M705627200. [DOI] [PubMed] [Google Scholar]
  • 138.Spermidine/spermine N1 acetyltransferase 2 is an essential component of the ubiquitin ligase complex that regulates hypoxia-inducible factor 1α. J Biol Chem. 2007;282:23572–23580. doi: 10.1074/jbc.M703504200. [DOI] [PubMed] [Google Scholar]
  • 139.Pawlus MR, Wang L, Hu CJ. STAT3 and HIF-1α cooperatively activate HIF-1 target genes in MDA-MB-231 and RCC4 cells. Oncogene. 2014;33:1670–1679. doi: 10.1038/onc.2013.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Shao R, Zhang FP, Tian F, Friberg PA, Wang X, Sjoland H, Billig H. Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1α in adult mouse brain and heart in vivo. FEBS Lett. 2004;569:293–300. doi: 10.1016/j.febslet.2004.05.079. [DOI] [PubMed] [Google Scholar]
  • 141.Senoo M, Matsumara Y, Habu S. TAp63γ (p51A) and dNp63α (p73L), two major isoforms of the p63 gene, exert opposite effects on the vascular endothelial growth factor (VEGF) gene expression. Oncogene. 2002;21:6455–6465. doi: 10.1038/sj.onc.1205330. [DOI] [PubMed] [Google Scholar]
  • 142.Amelio I, Inoue S, Markert EK, Levine AJ, Knight RA, Mak TW, Melino G. TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation. Proc Natl Acad Sci Usa. 2015;112:226–231. doi: 10.1073/pnas.1410609111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Xiang L, Gilkes DM, Hu H, Luo W, Bullen JW, Liang H, Semenza GL. HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells. Oncotarget. 2015;20:11768–11778. doi: 10.18632/oncotarget.4190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Sun H, Li XB, Meng Y, Fan L, Li M, Fang J. TRAF6 upregulates expression of HIF–1α and promotes tumor angiogenesis. Cancer Res. 2013;73:4950–4959. doi: 10.1158/0008-5472.CAN-13-0370. [DOI] [PubMed] [Google Scholar]
  • 145.Hagele S, Behnam B, Borter E, Wolfe J, Paasch U, Lukashev D, Sitkovsky M, Wenger RH, Katschinski DM. TSGA10 prevents nuclear localization of the hypoxia-inducible factor (HIF)-1α. FEBS Lett. 2006;580:3731–3738. doi: 10.1016/j.febslet.2006.05.058. [DOI] [PubMed] [Google Scholar]
  • 146.Mansouri K, Mostafie A, Rezazadeh D, Shahlaei M, Modarressi MH. New function of TSGA10 gene in angiogenesis and tumor metastasis: a response to a challengeable paradox. Hum Mol Genet. 2016;25:233–244. doi: 10.1093/hmg/ddv461. [DOI] [PubMed] [Google Scholar]
  • 147.Goto Y, Zeng L, Yeom CJ, Zhu Y, Morinibu A, Shinomiya K, Kobayashi M, Hirota K, Itasaka S, Yoshimura M, Tanimoto K, Torii M, Sowa T, Menju T, Sonobe M, Kakeya H, Toi M, Date H, Hammond EM, Hiraoka M, Harada H. UCHL1 provides diagnostic and antimetastatic strategies due to its ubiquitinating effect on HIF-1α. Nat Commun. 2015;6:6153. doi: 10.1038/ncomms7153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Wu HT, Kuo YC, Hung JJ, Huang CH, Chen WY, Chou TY, Chen Y, Chen YJ, Chen YJ, Cheng WC, Teng SC, Wu KJ. K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and dictates H3K56 acetylation promoting hypoxia-induced tumor progression. Nat Commun. 2016;7:13644. doi: 10.1038/ncomms13644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Troilo A, Alexander I, Muehl S, Jaramillo D, Knobeloch KP, Krek W. HIF-1α ubiquitination by USP8 is essential for ciliogenesis in normoxia. EMBO Rep. 2014;15:77–85. doi: 10.1002/embr.201337688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Altun M, Zhao B, Velasco K, Liu H, Hassink G, Paschke J, Pereira T, Lindsten K. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1α (HIF-1α) during hypoxia. J Biol Chem. 2012;287:1962–1969. doi: 10.1074/jbc.M111.305615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Li Z, Wang D, Messing EM, Wu G. VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1α. EMBO Rep. 2005;6:373–378. doi: 10.1038/sj.embor.7400377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH. Hypoxia-inducible factor α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem. 2000;275:25733–25741. doi: 10.1074/jbc.M002740200. [DOI] [PubMed] [Google Scholar]
  • 153.Abu-Remaileh M, Aqeilan RI. Tumor suppressor WWOX regulates glucose metabolism via HIF-α modulation. Cell Death Differ. 2014;21:1805–1814. doi: 10.1038/cdd.2014.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, Mai J, Shen H, Hu DZ, Adoro S, Hu B, Song M, Tan C, Landis MD, Ferrari M, Shin SJ, Brown M, Chang JC, Liu XS, Glimcher LH. XBP1 promotes triple-negative breast cancer by controlling the HIF-1α pathway. Nature. 2014;508:103–107. doi: 10.1038/nature13119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, Gao R, Zhou C, Cao L, Liu J, Zhu Y, Chen Q, Wu S. Hypoxia regulates Hippos signaling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 2015;17:95–103. doi: 10.1038/ncb3073. [DOI] [PubMed] [Google Scholar]
  • 156.Wu S, Kasim V, Kano MR, Tanaka S, Ohba S, Miura Y, Miyata K, Liu X, Matsuhashi A, Chung UI, Yang L, Kataoka K, Nishiyama N, Miyagishi M. Transcription factor YY1 contributes to tumor growth by stabilizing hypoxia factor HIF-1α in a p53-independent manner. Cancer Res. 2013;73:1787–1799. doi: 10.1158/0008-5472.CAN-12-0366. [DOI] [PubMed] [Google Scholar]
  • 157.Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–1471. doi: 10.1101/gad.991402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Cam H, Easton JB, High A, Hougton PJ. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α. Mol Cell. 2010;40:509–520. doi: 10.1016/j.molcel.2010.10.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Kalousi A, Mylonis I, Politou AS, Chachami G, Paraskeva E, Simos G. Casein kinase 1 regulates human hypoxia-inducible factor HIF-1. J Cell Sci. 2010;123:2976–2986. doi: 10.1242/jcs.068122. [DOI] [PubMed] [Google Scholar]
  • 160.Cho H, Ahn DR, Park H, Yang EG. Modulation of p300 binding by posttranslational modifications of the C-terminal activation domain of hypoxia-inducible factor 1α. FEBS Lett. 2007;581:1542–1548. doi: 10.1016/j.febslet.2007.03.015. [DOI] [PubMed] [Google Scholar]
  • 161.Kim Y, Nam HJ, Lee J, Park DY, Kim C, Yu YS, Kim D, Park SW, Bhin J, Hwang D, Lee H, Koh GY, Baek SH. Methylation-dependent regulation of HIF-1α stability restricts retinal and tumor angiogenesis. Nat Commun. 2016;7:10347. doi: 10.1038/ncomms10347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Paltoglou S, Roberts BJ. HIF-1α and EPAS ubiquitination mediated by the VHL tumor suppressor involves flexibility in the ubiquitination mechanism similar to other RING E3 ligases. Oncogene. 2007;26:604–609. doi: 10.1038/sj.onc.1209818. [DOI] [PubMed] [Google Scholar]
  • 163.Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012;92:967–1003. doi: 10.1152/physrev.00030.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES