Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1985 Jan;4(1):173–177. doi: 10.1002/j.1460-2075.1985.tb02333.x

Hormone processing and membrane-bound proteinases in yeast.

T Achstetter, D H Wolf
PMCID: PMC554167  PMID: 3894003

Abstract

A search for maturating peptidases of the precursor protein of the mating hormone (pheromone) alpha-factor of Saccharomyces cerevisiae was performed using short model peptides representing those sequences of the precursor protein, where cleavage is thought to occur in vivo. This search was done in a mutant lacking several of the unspecific vacuolar peptidases. The chromogenic peptide Cbz-Tyr-Lys-Arg-4-nitroanilide led to the detection of a membrane-bound enzyme called proteinase yscF. Cleavage of the synthetic peptide derivative occurs after the basic amino acid pair, a proposed signal for hormone processing. Optimum pH for the reaction is 7.2. The enzyme does not cleave after single basic amino acid residues indicating that it is distinct from trypsin-like proteinases. Proteolytic activity is enhanced by Triton X-100. The enzyme is strongly inhibited by EGTA, EDTA and mercurials but insensitive to phenylmethylsulfonyl fluoride. The enzyme activity is strongly dependent on Ca2+ ions. In a mutant (kex2), which accumulates an over-glycosylated alpha-factor precursor, no proteinase yscF activity can be found. Membrane-bound peptidase activity possibly involved in removal of the arginyl and lysyl residues remaining at the carboxy terminus of the alpha-factor pheromone peptide after the initial cut of the precursor molecule could be identified by using the model peptides Cbz-Tyr-Lys-Arg and Cbz-Tyr-Lys.

Full text

PDF
173

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achstetter T., Ehmann C., Osaki A., Wolf D. H. Proteolysis in eukaryotic cells. Proteinase yscE, a new yeast peptidase. J Biol Chem. 1984 Nov 10;259(21):13344–13348. [PubMed] [Google Scholar]
  2. Achstetter T., Ehmann C., Wolf D. H. New proteolytic enzymes in yeast. Arch Biochem Biophys. 1981 Apr 1;207(2):445–454. doi: 10.1016/0003-9861(81)90052-7. [DOI] [PubMed] [Google Scholar]
  3. Achstetter T., Ehmann C., Wolf D. H. Proteolysis in eucaryotic cells: aminopeptidases and dipeptidyl aminopeptidases of yeast revisited. Arch Biochem Biophys. 1983 Oct 1;226(1):292–305. doi: 10.1016/0003-9861(83)90296-5. [DOI] [PubMed] [Google Scholar]
  4. Achstetter T., Emter O., Ehmann C., Wolf D. H. Proteolysis in eukaryotic cells. Identification of multiple proteolytic enzymes in yeast. J Biol Chem. 1984 Nov 10;259(21):13334–13343. [PubMed] [Google Scholar]
  5. Benson J. R., Hare P. E. O-phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. Proc Natl Acad Sci U S A. 1975 Feb;72(2):619–622. doi: 10.1073/pnas.72.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bussey H. Physiology of killer factor in yeast. Adv Microb Physiol. 1981;22:93–122. doi: 10.1016/s0065-2911(08)60326-4. [DOI] [PubMed] [Google Scholar]
  7. Chan R. K., Otte C. A. Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol. 1982 Jan;2(1):21–29. doi: 10.1128/mcb.2.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Docherty K., Steiner D. F. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  9. Emter O., Mechler B., Achstetter T., Müller H., Wolf D. H. Yeast pheromone alpha-factor is synthesized as a high molecular weight precursor. Biochem Biophys Res Commun. 1983 Nov 15;116(3):822–829. doi: 10.1016/s0006-291x(83)80216-2. [DOI] [PubMed] [Google Scholar]
  10. Julius D., Blair L., Brake A., Sprague G., Thorner J. Yeast alpha factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell. 1983 Mar;32(3):839–852. doi: 10.1016/0092-8674(83)90070-3. [DOI] [PubMed] [Google Scholar]
  11. Julius D., Brake A., Blair L., Kunisawa R., Thorner J. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor. Cell. 1984 Jul;37(3):1075–1089. doi: 10.1016/0092-8674(84)90442-2. [DOI] [PubMed] [Google Scholar]
  12. Julius D., Schekman R., Thorner J. Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Cell. 1984 Feb;36(2):309–318. doi: 10.1016/0092-8674(84)90224-1. [DOI] [PubMed] [Google Scholar]
  13. Kato N., Sahm H., Schütte H., Wagner F. Purification and properties of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase from a methanol-utilizing yeast, Candida boidinii. Biochim Biophys Acta. 1979 Jan 12;566(1):1–11. doi: 10.1016/0005-2744(79)90242-0. [DOI] [PubMed] [Google Scholar]
  14. Kurjan J., Herskowitz I. Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell. 1982 Oct;30(3):933–943. doi: 10.1016/0092-8674(82)90298-7. [DOI] [PubMed] [Google Scholar]
  15. Leibowitz M. J., Wickner R. B. A chromosomal gene required for killer plasmid expression, mating, and spore maturation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2061–2065. doi: 10.1073/pnas.73.6.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Manney T. R., Jackson P., Meade J. Two temperature-sensitive mutants of Saccharomyces cerevisiae with altered expression of mating-type functions. J Cell Biol. 1983 Jun;96(6):1592–1600. doi: 10.1083/jcb.96.6.1592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mizuno K., Matsuo H. A novel protease from yeast with specificity towards paired basic residues. Nature. 1984 Jun 7;309(5968):558–560. doi: 10.1038/309558a0. [DOI] [PubMed] [Google Scholar]
  18. Steiner D. F., Quinn P. S., Chan S. J., Marsh J., Tager H. S. Processing mechanisms in the biosynthesis of proteins. Ann N Y Acad Sci. 1980;343:1–16. doi: 10.1111/j.1749-6632.1980.tb47238.x. [DOI] [PubMed] [Google Scholar]
  19. Wolf D. H., Ehmann C. Carboxypeptidase S- and carboxypeptidase Y-deficient mutants of Saccharomyces cerevisiae. J Bacteriol. 1981 Aug;147(2):418–426. doi: 10.1128/jb.147.2.418-426.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES