Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1985 Feb;4(2):323–327. doi: 10.1002/j.1460-2075.1985.tb03632.x

Purification of the putative alpha-latrotoxin receptor from bovine synaptosomal membranes in an active binding form.

H Scheer, J Meldolesi
PMCID: PMC554189  PMID: 2862028

Abstract

alpha-Latrotoxin (alpha-LTx, apparent mol. wt. 130 000) is a presynaptically active neurotoxin purified from the venom of the black widow spider that causes massive exocytotic release of neurotransmitters, presumably via binding to presynaptic membrane protein(s). Solubilization and purification experiments were undertaken to identify and characterize this membrane component. An immunoaffinity matrix was prepared by sequentially binding anti-alpha-LTx antibodies and alpha-LTx to Protein A-Sepharose CL-4B. Beads were irreversibly cross-linked with dimethyl pimelimidate. These beads were capable of extracting alpha-LTx binding activity from Triton X-100 solubilized bovine synaptosomal membranes. Following extensive washing, bound material was eluted with 6 M urea. Analysis of silver stained and radiolabel-containing gels revealed one major band (apparent mol. wt. 200 000) under non-reducing conditions and two major bands (apparent mol. wts. 66 000 and 54 000) under reducing conditions. The purified material was still capable of specifically binding alpha-LTx as determined by solid phase assays on microtiter plates. The affinity for alpha-LTx of the purified preparation was similar to that of the native membrane (KA approximately 10(10) M). It is concluded that a putative alpha-LTx receptor protein can be purified from synaptosomal membranes using an immunoaffinity matrix in a form that retains its defined biological property (alpha-LTx binding).

Full text

PDF
323

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
  2. Ceccarelli B., Hurlbut W. P. Vesicle hypothesis of the release of quanta of acetylcholine. Physiol Rev. 1980 Apr;60(2):396–441. doi: 10.1152/physrev.1980.60.2.396. [DOI] [PubMed] [Google Scholar]
  3. Dolly J. O., Black J., Williams R. S., Melling J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature. 1984 Feb 2;307(5950):457–460. doi: 10.1038/307457a0. [DOI] [PubMed] [Google Scholar]
  4. Froehner S. C., Reiness C. G., Hall Z. W. Subunit structure of the acetylcholine receptor from denervated rat skeletal muscle. J Biol Chem. 1977 Dec 10;252(23):8589–8596. [PubMed] [Google Scholar]
  5. Frontali N., Ceccarelli B., Gorio A., Mauro A., Siekevitz P., Tzeng M. C., Hurlbut W. P. Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J Cell Biol. 1976 Mar;68(3):462–479. doi: 10.1083/jcb.68.3.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grasso A., Alemà S., Rufini S., Senni M. I. Black widow spider toxin-induced calcium fluxes and transmitter release in a neurosecretory cell line. Nature. 1980 Feb 21;283(5749):774–776. doi: 10.1038/283774a0. [DOI] [PubMed] [Google Scholar]
  7. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  8. Hurlbut W. P., Ceccarelli B. Use of black widow spider venom to study the release of neurotransmitters. Adv Cytopharmacol. 1979;3:87–115. [PubMed] [Google Scholar]
  9. Jones D. H., Matus A. I. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta. 1974 Aug 9;356(3):276–287. doi: 10.1016/0005-2736(74)90268-5. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Meldolesi J., Madeddu L., Torda M., Gatti G., Niutta E. The effect of alpha-latrotoxin on the neurosecretory PC12 cell line: studies on toxin binding and stimulation of transmitter release. Neuroscience. 1983 Nov;10(3):997–1009. doi: 10.1016/0306-4522(83)90238-5. [DOI] [PubMed] [Google Scholar]
  12. Meldolesi J. Studies on alpha-latrotoxin receptors in rat brain synaptosomes: correlation between toxin binding and stimulation of transmitter release. J Neurochem. 1982 Jun;38(6):1559–1569. doi: 10.1111/j.1471-4159.1982.tb06633.x. [DOI] [PubMed] [Google Scholar]
  13. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  14. Picotti G. B., Bondiolotti G. P., Meldolesi J. Peripheral catecholamine release by alpha-latrotoxin in the rat. Naunyn Schmiedebergs Arch Pharmacol. 1982 Sep;320(3):224–229. doi: 10.1007/BF00510132. [DOI] [PubMed] [Google Scholar]
  15. Rehm H., Betz H. Identification by cross-linking of a beta-bungarotoxin binding polypeptide in chick brain membranes. EMBO J. 1983;2(7):1119–1122. doi: 10.1002/j.1460-2075.1983.tb01555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rehm H., Betz H. Solubilization and characterization of the beta-bungarotoxin-binding protein of chick brain membranes. J Biol Chem. 1984 Jun 10;259(11):6865–6869. [PubMed] [Google Scholar]
  17. Schneider C., Newman R. A., Sutherland D. R., Asser U., Greaves M. F. A one-step purification of membrane proteins using a high efficiency immunomatrix. J Biol Chem. 1982 Sep 25;257(18):10766–10769. [PubMed] [Google Scholar]
  18. Simpson L. L. The interaction between aminoquinolines and presynaptically acting neurotoxins. J Pharmacol Exp Ther. 1982 Jul;222(1):43–48. [PubMed] [Google Scholar]
  19. Tasheva B., Dessev G. Artifacts in sodium dodecyl sulfate-polyacrylamide gel electrophoresis due to 2-mercaptoethanol. Anal Biochem. 1983 Feb 15;129(1):98–102. doi: 10.1016/0003-2697(83)90057-x. [DOI] [PubMed] [Google Scholar]
  20. Tzeng M. C., Cohen R. S., Siekevitz P. Release of neurotransmitters and depletion of synaptic vesicles in cerebral cortex slices by alpha-latrotoxin from black widow spider venom. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4016–4020. doi: 10.1073/pnas.75.8.4016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tzeng M. C., Siekevitz P. The binding interaction between alpha-latrotoxin from black widow spider venom and a dog cerebral cortex synaptosomal membrane preparation. J Neurochem. 1979 Jul;33(1):263–274. doi: 10.1111/j.1471-4159.1979.tb11728.x. [DOI] [PubMed] [Google Scholar]
  22. Valtorta F., Madeddu L., Meldolesi J., Ceccarelli B. Specific localization of the alpha-latrotoxin receptor in the nerve terminal plasma membrane. J Cell Biol. 1984 Jul;99(1 Pt 1):124–132. doi: 10.1083/jcb.99.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vicentini L. M., Meldolesi J. alpha Latrotoxin of black widow spider venom binds to a specific receptor coupled to phosphoinositide breakdown in PC12 cells. Biochem Biophys Res Commun. 1984 Jun 15;121(2):538–544. doi: 10.1016/0006-291x(84)90215-8. [DOI] [PubMed] [Google Scholar]
  24. Watanabe O., Meldolesi J. The effects of alpha-latrotoxin of black widow spider venom on synaptosome ultrastructure. A morphometric analysis correlating its effects on transmitter release. J Neurocytol. 1983 Jun;12(3):517–531. doi: 10.1007/BF01159388. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES