Abstract
The lipid state in acetylcholine receptor (AcChR)-rich membranes purified from electric organ of Torpedo marmorata was studied in the temperature interval from 0 degrees C to 35 degrees C using the (C-H) stretching and (C-C) skeletal optical vibrations. The Raman spectra of AcChR-rich membranes, recorded immediately after preparation of the samples, indicate that the lipids are in a predominant triclinic crystalline lattice and do not undergo a phase transition when the temperature increases up to 35 degrees C. However, the polar groups of the lipids appear subject to temperature-induced variations. After extraction of 43-kd and other non-receptor proteins, spectra indicate an order-disorder phase transition of lipids at approximately 21 degrees C. This transition appears less cooperative than the transition of the membrane lipid extract. The role of the proteins in preservation of the crystalline state of lipids in AcChR-rich membranes is discussed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aslanian D., Vainer H., Guesdon J. P. Thermotropic state transition in isolated platelet membranes studied by Raman spectroscopy. Eur J Biochem. 1983 Apr 5;131(3):555–558. doi: 10.1111/j.1432-1033.1983.tb07298.x. [DOI] [PubMed] [Google Scholar]
- Brown K. G., Peticolas W. L., Brown E. Raman studies of conformational changes in model membrane systems. Biochem Biophys Res Commun. 1973 Sep 5;54(1):358–364. doi: 10.1016/0006-291x(73)90930-3. [DOI] [PubMed] [Google Scholar]
- Chapman D., Cornell B. A., Ellasz A. W., Perry A. Interactions of helical polypepetide segments which span the hydrocarbon region of lipid bilayers. Studies of the gramicidin A lipid-water system. J Mol Biol. 1977 Jul 5;113(3):517–538. doi: 10.1016/0022-2836(77)90236-4. [DOI] [PubMed] [Google Scholar]
- Curatolo W., Sakura J. D., Small D. M., Shipley G. G. Protein-lipid interactions: recombinants of the proteolipid apoprotein of myelin with dimyristoyllecithin. Biochemistry. 1977 May 31;16(11):2313–2319. doi: 10.1021/bi00630a001. [DOI] [PubMed] [Google Scholar]
- Farach M. C., Martinez-Carrion M. A differential scanning calorimetry study of acetylcholine receptor-rich membranes from Torpedo californica. J Biol Chem. 1983 Apr 10;258(7):4166–4170. [PubMed] [Google Scholar]
- Haberkorn R. A., Griffin R. G., Meadows M. D., Oldfield E. Deuterium nuclear magnetic resonance investigation of the dipalmitoyl lecithin-cholesterol-water system. J Am Chem Soc. 1977 Oct 26;99(22):7353–7355. doi: 10.1021/ja00464a043. [DOI] [PubMed] [Google Scholar]
- Jacobs R., Oldfield E. Deuterium nuclear magnetic resonance investigation of dimyristoyllecithin--dipalmitoyllecithin and dimyristoyllecithin--cholesterol mixtures. Biochemistry. 1979 Jul 24;18(15):3280–3285. doi: 10.1021/bi00582a013. [DOI] [PubMed] [Google Scholar]
- Janiak M. J., Small D. M., Shipley G. G. Nature of the Thermal pretransition of synthetic phospholipids: dimyristolyl- and dipalmitoyllecithin. Biochemistry. 1976 Oct 19;15(21):4575–4580. doi: 10.1021/bi00666a005. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levin I. W., Bush S. F. Evidence for acyl chain trans/gauche isomerization during the thermal pretransition of dipalmitoyl phosphatidylcholine bilayer dispersions. Biochim Biophys Acta. 1981 Feb 6;640(3):760–766. doi: 10.1016/0005-2736(81)90106-1. [DOI] [PubMed] [Google Scholar]
- Lippert J. L., Peticolas W. L. Laser Raman investigation of the effect of cholesterol on conformational changes in dipalmitoyl lecithin multilayers. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1572–1576. doi: 10.1073/pnas.68.7.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lord R. C., Yu N. T. Laser-excited Raman spectroscopy of biomolecules. II. Native ribonuclease and alpha-chymotrypsin. J Mol Biol. 1970 Jul 28;51(2):203–213. doi: 10.1016/0022-2836(70)90137-3. [DOI] [PubMed] [Google Scholar]
- Marsh D., Barrantes F. J. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4329–4333. doi: 10.1073/pnas.75.9.4329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michaelson D. M., Raftery M. A. Purified acetylcholine receptor: its reconstitution to a chemically excitable membrane. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4768–4772. doi: 10.1073/pnas.71.12.4768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mombers C., Verkleij A. J., de Gier J., van Deenen L. L. The interaction of spectrin-actin and synthetic phospholipids. II. The interaction with phosphatidylserine. Biochim Biophys Acta. 1979 Mar 8;551(2):271–281. doi: 10.1016/0005-2736(89)90005-9. [DOI] [PubMed] [Google Scholar]
- Reiss C., Michel F., Gabarro J. An apparatus for studying the thermal transition of nucleic acids at high resolution. Anal Biochem. 1974 Dec;62(2):499–508. doi: 10.1016/0003-2697(74)90182-1. [DOI] [PubMed] [Google Scholar]
- Rousselet A., Devaux P. F., Wirtz K. W. Free fatty acids and esters can be immobilized by receptor rich membranes from Torpedo marmorata but not phospholipid acyl chains. Biochem Biophys Res Commun. 1979 Oct 12;90(3):871–877. doi: 10.1016/0006-291x(79)91908-9. [DOI] [PubMed] [Google Scholar]
- Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]
- Sobel A., Weber M., Changeux J. P. Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur J Biochem. 1977 Oct 17;80(1):215–224. doi: 10.1111/j.1432-1033.1977.tb11874.x. [DOI] [PubMed] [Google Scholar]
- Spiker R. C., Jr, Levin I. W. Raman spectra and vibrational assignments for dipalmitoyl phosphatidylcholine and structurally related molecules. Biochim Biophys Acta. 1975 Jun 23;388(3):361–373. doi: 10.1016/0005-2760(75)90095-8. [DOI] [PubMed] [Google Scholar]
- Verma S. P., Schmidt-Ullrich R., Thompson W. S., Wallach D. F. Differences between the structural dynamics of plasma membranes of normal hamster lymphocytes and lymphoid cells neoplastically transformed by simian virus 40 as revealed by laser Raman spectroscopy. Cancer Res. 1977 Oct;37(10):3490–3493. [PubMed] [Google Scholar]
- Verma S. P., Wallach D. F. Multiple thermotropic state transitions in erythrocyte membranes. A laser-Raman study of the CH-stretching and acoustical regions. Biochim Biophys Acta. 1976 Jun 17;436(2):307–318. doi: 10.1016/0005-2736(76)90196-6. [DOI] [PubMed] [Google Scholar]
- Verma S. P., Wallach D. F., Schmidt-Ullrich R. The structure and thermotropism of thymocyte plasma membranes as revealed by laser-raman spectroscopy. Biochim Biophys Acta. 1975 Jul 18;394(4):633–645. doi: 10.1016/0005-2736(75)90148-0. [DOI] [PubMed] [Google Scholar]
- Wallach D. F., Verma S. P., Fookson J. Application of laser Raman and infrared spectroscopy to the analysis of membrane structure. Biochim Biophys Acta. 1979 Aug 20;559(2-3):153–208. doi: 10.1016/0304-4157(79)90001-7. [DOI] [PubMed] [Google Scholar]
- van Zoelen E. J., van Dijck P. W., de Kruijff B., Verkleij A. J., van Deenen L. L. Effect of glycophorin incorporation on the physico-chemical properties of phospholipid bilayers. Biochim Biophys Acta. 1978 Dec 4;514(1):9–24. doi: 10.1016/0005-2736(78)90073-1. [DOI] [PubMed] [Google Scholar]