Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1985 May;4(5):1333–1338. doi: 10.1002/j.1460-2075.1985.tb03781.x

Stabilized non-complementing diploids (Ncd) from fused protoplast products of B. subtilis.

N Guillén, M Amar, L Hirschbein
PMCID: PMC554345  PMID: 3924601

Abstract

Non-complementing diploids (Ncd) displaying the parental phenotype can be selected from polyethylene glycol (PEG)-treated fused polyauxotrophic protoplasts of Bacillus subtilis. These bacteria carry the two parental genomes, but only one of them is phenotypically expressed, the other being replicated but not expressed. Cellular cloning and DNA-DNA in situ hybridization led to the discovery of non-complementing diploid cells which at first sight could have been considered as parental haploids. The new class of stabilized Ncd (10(-7) segregants) can be obtained either directly after the primary fusion event or from segregating Ncd after further growth. The totally inactive chromosome of a stable Ncd can be activated after PEG-induced self fusion. DNA-mediated transformation studies using crude stable Ncd lysates as DNA donors show low frequencies for the genetic markers from the 'silent' chromosome. Contrary to the unstable Ncd situation, however, these frequencies remain low even with purified donor DNA. The differences in the transformation properties of the non-expressed markers are correlated to Ncd clone stability. These facts suggest that chromosome inactivation in PEG-induced fusion involves at least a two-stage process. The first would be reversible and the second irreversible, thus preserving the inactive chromosome state.

Full text

PDF
1333

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bugaichuk U. D., Deadman M., Errington J., Savva D. Restriction enzyme analysis of Bacillus subtilis bacteriophage phi 105 DNA. J Gen Microbiol. 1984 Aug;130(8):2165–2167. doi: 10.1099/00221287-130-8-2165. [DOI] [PubMed] [Google Scholar]
  3. Frehel C., Lheritier A. M., Sanchez-Rivas C., Schaeffer P. Electron microscopic study of Bacillus subtilis protoplast fusion. J Bacteriol. 1979 Mar;137(3):1354–1361. doi: 10.1128/jb.137.3.1354-1361.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gabor M. H., Hotchkiss R. D. Parameters governing bacterial regeneration and genetic recombination after fusion of Bacillus subtilis protoplasts. J Bacteriol. 1979 Mar;137(3):1346–1353. doi: 10.1128/jb.137.3.1346-1353.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gabor M. H., Hotchkiss R. D. Reciprocal and nonreciprocal recombination in diploid clones from Bacillus subtilis protoplast fusion: Association with the replication origin and terminus. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1426–1430. doi: 10.1073/pnas.80.5.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gartler S. M., Riggs A. D. Mammalian X-chromosome inactivation. Annu Rev Genet. 1983;17:155–190. doi: 10.1146/annurev.ge.17.120183.001103. [DOI] [PubMed] [Google Scholar]
  7. Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guillen N., Gabor M. H., Hotchkiss R. D., Hirschbein L. Isolation and characterization of the nucleoid of non-complementing diploids from protoplast fusion in Bacillus subtilis. Mol Gen Genet. 1982;185(1):69–74. doi: 10.1007/BF00333792. [DOI] [PubMed] [Google Scholar]
  9. Guillen N., Sanchez-Rivas C., Hirschbein L. Absence of functional RNA encoded by a silent chromosome in non-complementing diploids obtained from protoplast fusion in Bacillus subtilis. Mol Gen Genet. 1983;191(1):81–85. doi: 10.1007/BF00330893. [DOI] [PubMed] [Google Scholar]
  10. Hirschbein L., Guillen N. Characterization, assay, and use of isolated bacterial nucleoids. Methods Biochem Anal. 1982;28:297–328. doi: 10.1002/9780470110485.ch7. [DOI] [PubMed] [Google Scholar]
  11. Hotchkiss R. D., Gabor M. H. Biparental products of bacterial protoplast fusion showing unequal parental chromosome expression. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3553–3557. doi: 10.1073/pnas.77.6.3553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lévi-Meyrueis C., Sanchez-Rivas C. Complementation and genetic inactivation: two alternative mechanisms leading to prototrophy in diploid bacterial clones. Mol Gen Genet. 1984;196(3):488–493. doi: 10.1007/BF00436197. [DOI] [PubMed] [Google Scholar]
  13. Lévi-Meyrueis C., Sanchez-Rivas C., Schaeffer P. Formation de bactéries diploïdes stables par fusion de protoplastes de Bacillus subtilis et effet de mutations rec- sur les produits de fusion formés. C R Seances Acad Sci D. 1980 Jul 7;291(1):67–70. [PubMed] [Google Scholar]
  14. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  15. Rutberg L., Sandström E., Nilsson K. Circular chromosomal map of a temperate Bacillus phage. Virology. 1967 May;32(1):103–108. doi: 10.1016/0042-6822(67)90257-7. [DOI] [PubMed] [Google Scholar]
  16. Sanchez-Rivas C. Direct selection of complementing diploids from PEG-induced fusion of Bacillus subtilis protoplasts. Mol Gen Genet. 1982;185(2):329–333. doi: 10.1007/BF00330807. [DOI] [PubMed] [Google Scholar]
  17. Sanchez-Rivas C., Garro A. J. Bacterial fusion assayed by a prophage complementation test. J Bacteriol. 1979 Mar;137(3):1340–1345. doi: 10.1128/jb.137.3.1340-1345.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sanchez-Rivas C., Lévi-Meyrueis C., Lazard-Monier F., Schaeffer P. Diploid state of phenotypically recombinant progeny arising after protoplast fusion in Bacillus subtilis. Mol Gen Genet. 1982;188(2):272–278. doi: 10.1007/BF00332687. [DOI] [PubMed] [Google Scholar]
  19. Saunders C. W., Schmidt B. J., Mirot M. S., Thompson L. D., Guyer M. S. Use of chromosomal integration in the establishment and expression of blaZ, a Staphylococcus aureus beta-lactamase gene, in Bacillus subtilis. J Bacteriol. 1984 Mar;157(3):718–726. doi: 10.1128/jb.157.3.718-726.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schaeffer P., Cami B., Hotchkiss R. D. Fusion of bacterial protoplasts. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2151–2155. doi: 10.1073/pnas.73.6.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Youngman P. J., Perkins J. B., Losick R. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2305–2309. doi: 10.1073/pnas.80.8.2305. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES