ABSTRACT
The Gram-negative bacterium Stenotrophomonas bentonitica BII-R7T was isolated from bentonite formations. Like other species within the genus Stenotrophomonas, strain BII-R7T possesses high tolerance to numerous heavy metals, suggesting potential for bioremediation purposes. The draft genome sequence reported here comprises 4.37 Mb with a G+C content of 66.5% and 3,796 predicted protein-coding sequences.
GENOME ANNOUNCEMENT
Stenotrophomonas bentonitica BII-R7T (= LMG 29893T = CECT 9180T = DSM 103927T) is a recently described Gram-negative bacterial strain that was isolated from bentonite formations located in southern Spain (1). The genus Stenotrophomonas has hitherto comprised 14 established species, isolated from a large variety of environments (2–14), that are resistant to certain antibiotics and metals (15). In this sense, S. bentonitica has shown high uranium (1) and selenium (M. A. Ruiz-Fresneda, unpublished data) tolerance due to different interaction mechanisms, suggesting potential applicability for bioremediation purposes. Indeed, the biotechnological use of Stenotrophomonas spp. has already been proposed (16–21). Research on all but one of the 14 known Stenotrophomonas spp., S. tumulicola (13), counts on freely available genome sequences of the corresponding species (22). Here, we report the draft genome sequence of S. bentonitica strain BII-R7T.
After cultivation on LB medium, genomic DNA of S. bentonitica BII-R7T was extracted as described by Martín-Platero et al. (23). A genomic library with an insert size of 350 bp was sequenced using the Illumina HiSeq 2000 platform at Macrogen, Inc. (Seoul, Republic of Korea).
A total of 53,608,108 paired-end 101-bp reads were obtained (>1,000 × coverage). The quality of the reads was assessed using FastQC (24), and the Q20 and Q30 indices were 95.34% and 87.69%, respectively. Multiple de novo genome assemblies were performed using ABySS version 1.5.1 (25) with k-mer sizes between 19 and 95. The assemblies were merged, filtered, and further assembled into scaffolds using TransABySS (26) and GS de novo assembler software (Roche). We obtained 191 scaffolds with an N50 of 35,432 and an L50 of 38. The mean size of these scaffolds was 22,890 bp with the largest comprising 187,875 bp and the smallest comprising 2,262 bp. The size of the entire sequence was 4,371,992 bp with a 66.5% G+C content, which are values in accordance with described Stenotrophomonas spp.
Gene prediction and annotation were performed using the Rapid Annotations using Subsystems Technology server (27) and the Prokaryotic Genome Annotation Pipeline (28). The genomic features of S. bentonitica BII-R7T included a total of 3,786 coding sequences (CDSs), 1 complete rRNA cluster, 44 tRNAs, 4 ncRNAs, and 158 pseudogenes. The coding sequences were classified into 431 subsystems, the most abundant of which were for the metabolism of amino acid derivatives (n = 352 CDSs); carbohydrates (n = 214); protein metabolism (n = 205); metabolism of cofactors, vitamins, prosthetic groups, and pigments (n = 204); membrane transport (n = 160); and RNA metabolism (n = 147). Additionally, 115 of these coding sequences were related to stress responses, such as osmotic and oxidative stress, cold and heat shock stress, or uptake of selenate and selenite. Genes related to degradation or resistance to a variety of toxic compounds (e.g., ethidium bromide) and heavy metals (e.g., cobalt, zinc, cadmium, tellurium, copper, arsenic, or mercury) were also identified in the present draft genome. Moreover, the draft genome contains specific enzymes, such as alkaline and acid phosphatases or glutathione reductases, which could, respectively, be involved in the high levels of tolerance that S. bentonitica BII-R7T (1, 17) has to uranium and selenium.
Accession number(s).
This whole-genome shotgun project has been deposited at GenBank/ENA/DDBJ under the accession number MKCZ00000000. The version described in this paper is the first version, MKCZ01000000.
ACKNOWLEDGMENTS
This study was supported by the ERDF-cofinanced grants CGL2012-36505 and CGL2014-59616-R (Ministerio de Ciencia e Innovación, Spain; 80% funded by FEDER). We also acknowledge funding received from the Euratom research and training program 2014–2018 under grant agreement no. 661880.
Footnotes
Citation Sánchez-Castro I, Bakkali M, Merroun ML. 2017. Draft genome sequence of Stenotrophomonas bentonitica BII-R7T, a selenite-reducing bacterium isolated from Spanish bentonites. Genome Announc 5:e00719-17. https://doi.org/10.1128/genomeA.00719-17.
REFERENCES
- 1.López-Fernández M, Fernández-Sanfrancisco O, Moreno-García A, Martín-Sánchez I, Sánchez-Castro I, Merroun ML. 2014. Microbial communities in bentonite formations and their interactions with uranium. Appl Geochem 49:77–86. doi: 10.1016/j.apgeochem.2014.06.022. [DOI] [Google Scholar]
- 2.Palleroni NJ, Bradbury JF. 1993. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 43:606–609. doi: 10.1099/00207713-43-3-606. [DOI] [PubMed] [Google Scholar]
- 3.Finkmann W, Altendorf K, Stackebrandt E, Lipski A. 2000. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50:273–282. doi: 10.1099/00207713-50-1-273. [DOI] [PubMed] [Google Scholar]
- 4.Assih EA, Ouattara AS, Thierry S, Cayol JL, Labat M, Macarie H. 2002. Stenotrophomonas acidaminiphila sp. nov., a strictly aerobic bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. Int J Syst Evol Microbiol 52:559–568. doi: 10.1099/00207713-52-2-559. [DOI] [PubMed] [Google Scholar]
- 5.Wolf A, Fritze A, Hagemann M, Berg G. 2002. Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol 52:1937–1944. doi: 10.1099/00207713-52-6-1937. [DOI] [PubMed] [Google Scholar]
- 6.Yang HC, Im WT, Kang MS, Shin DY, Lee ST. 2006. Stenotrophomonas koreensis sp. nov., isolated from compost in South Korea. Int J Syst Evol Microbiol 56:81–84. doi: 10.1099/ijs.0.63826-0. [DOI] [PubMed] [Google Scholar]
- 7.Heylen K, Vanparys B, Peirsegaele F, Lebbe L, De Vos P. 2007. Stenotrophomonas terrae sp. nov. and Stenotrophomonas humi sp. nov., two nitrate-reducing bacteria isolated from soil. Int J Syst Evol Microbiol 57:2056–2061. doi: 10.1099/ijs.0.65044-0. [DOI] [PubMed] [Google Scholar]
- 8.Kaparullina E, Doronina N, Chistyakova T, Trotsenko Y. 2009. Stenotrophomonas chelatiphaga sp. nov., a new aerobic EDTA-degrading bacterium. Syst Appl Microbiol 32:157–162. doi: 10.1016/j.syapm.2008.12.003. [DOI] [PubMed] [Google Scholar]
- 9.Kim HB, Srinivasan S, Sathiyaraj G, Quan LH, Kim SH, Bui TPN, Liang ZQ, Kim YJ, Yang DC. 2010. Stenotrophomonas ginsengisoli sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 60:1522–1526. doi: 10.1099/ijs.0.014662-0. [DOI] [PubMed] [Google Scholar]
- 10.Yi H, Srinivasan S, Kim MK. 2010. Stenotrophomonas panacihumi sp. nov., isolated from soil of a ginseng field. J Microbiol 48:30–35. doi: 10.1007/s12275-010-0006-0. [DOI] [PubMed] [Google Scholar]
- 11.Lee M, Woo SG, Chae M, Shin MC, Jung HM, Ten LN. 2011. Stenotrophomonas daejeonensis sp. nov., isolated from sewage. Int J Syst Evol Microbiol 61:598–604. doi: 10.1099/ijs.0.017780-0. [DOI] [PubMed] [Google Scholar]
- 12.Ramos PL, Van Trappen S, Thompson FL, Rocha RC, Barbosa HR, De Vos P, Moreira-Filho CA. 2011. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. Int J Syst Evol Microbiol 61:926–931. doi: 10.1099/ijs.0.019372-0. [DOI] [PubMed] [Google Scholar]
- 13.Handa Y, Tazato N, Nagatsuka Y, Koide T, Kigawa R, Sano C, Sugiyama J. 2016. Stenotrophomonas tumulicola sp. nov., a major contaminant of the stone chamber interior in the Takamatsuzuka Tumulus. Int J Syst Evol Microbiol 66:1119–1124. doi: 10.1099/ijsem.0.000843. [DOI] [PubMed] [Google Scholar]
- 14.Sánchez-Castro I, Ruiz-Fresneda MA, Bakkali M, Kämpfer P, Glaeser SP, Busse H-J, López-Fernández M, Martínez-Rodríguez P, Merroun ML. Stenotrophomonas bentonitica sp. nov., isolated from bentonite formations. Int J Syst Evol Microbiol, in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525. doi: 10.1038/nrmicro2163. [DOI] [PubMed] [Google Scholar]
- 16.Binks PR, Nicklin S, Bruce NC. 1995. Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Merroun ML, Selenska-Pobell S. 2008. Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295. doi: 10.1016/j.jconhyd.2008.09.019. [DOI] [PubMed] [Google Scholar]
- 18.Song HP, Li XG, Sun JS, Xu SM, Han X. 2008. Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere 72:616–621. doi: 10.1016/j.chemosphere.2008.02.064. [DOI] [PubMed] [Google Scholar]
- 19.Morel MA, Ubalde MC, Olivera-Bravo S, Callejas C, Gill PR, Castro-Sowinski S. 2009. Cellular and biochemical response to Cr(VI) in Stenotrophomonas sp. FEMS Microbiol Lett 291:162–168. doi: 10.1111/j.1574-6968.2008.01444.x. [DOI] [PubMed] [Google Scholar]
- 20.Ghosh A, Das Saha PD. 2013. Optimization of copper bioremediation by Stenotrophomonas maltophilia PD2. J Environ Chem Eng 1:159–163. doi: 10.1016/j.jece.2013.04.012. [DOI] [Google Scholar]
- 21.Ge S, Ge SC. 2016. Simultaneous Cr(VI) reduction and Zn(II) biosorption by Stenotrophomonas sp. and constitutive expression of related genes. Biotechnol Lett 38:877–884. doi: 10.1007/s10529-016-2057-8. [DOI] [PubMed] [Google Scholar]
- 22.Patil PP, Midha S, Kumar S, Patil PB. 2016. Genome sequence of type strains of genus Stenotrophomonas. Front Microbiol 7:309. doi: 10.3389/fmicb.2016.00309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Martín-Platero AM, Valdivia E, Maqueda M, Martínez-Bueno M. 2007. Fast, convenient and economical method for isolating genomic DNA from lactic-acid bacteria using a modification of the “protein salting-out” procedure. Anal Biochem 366:102–104. doi: 10.1016/j.ab.2007.03.010. [DOI] [PubMed] [Google Scholar]
- 24.Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
- 25.Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123. doi: 10.1101/gr.089532.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL, Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones SJ, Hoodless PA, Birol I. 2010. De novo assembly and analysis of RNA-seq data. Nat Methods 7:909–912. doi: 10.1038/nmeth.1517. [DOI] [PubMed] [Google Scholar]
- 27.Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. doi: 10.1186/1471-2164-9-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. doi: 10.1093/nar/gkw569. [DOI] [PMC free article] [PubMed] [Google Scholar]
