Abstract
Background
Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells.
Methods
We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction.
Results
We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions.
Conclusion
The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Keywords: Astrocytes, complement receptors, fractalkine, lipopolysaccharide, macrophages, microglia, neurons, phosphatidylserine, scavenger receptors
INTRODUCTION
Comprising between 5 and 12% of the total cell population in the central nervous system (CNS) [1], with an estimated 3.5 x 106 cells in the adult mouse brain [1], microglia are not just the resident immunocompetent cells of the CNS but a heterogeneous group of cells that also contributes to neural network homeostasis and function [1-4]. Classically, microglia were studied under immune and inflammatory contexts [1, 2, 5] due to their well-known ability to phagocytose foreign agents and debris [1, 2, 5] and release diverse injurious mediators including proinflammatory cytokines, reactive oxygen species (ROS), and nitric oxide (NO) [6]. However, it is clear now that microglia also act under non-inflammatory conditions, sensing neural function [2, 7, 8] and modulating network excitability and communication [4, 9]. Thus, in order to understand the role of this cell type in CNS physiological and pathological activities, it is important to comprehend its biology, not just by providing an overview of its diverse functions but also by revealing pharmacological and non-pharmacological tools to modulate its function. This endeavor has helped to understand the impact of microglia on brain function and has offered possible targets to prevent their pathological effects [10].
The biology of microglia is very complex, mainly because this cell type includes a heterogeneous population of cells. For instance, under physiological conditions, microglia show marked differences in cellular density and morphology between and within brain regions [1, 5, 11, 12] as well as phenotypic changes with age [12-17]. This diversity is reflected in their highly variable transcriptional identities, which also depend on age and region [12, 15-17]. Microglial subtypes can produce and release different combinations of autocrine and paracrine mediators [17, 18] and respond heterogeneously to specific stimuli [12, 15-17]. In the mature CNS, microglia are the most dynamic and morphologically plastic cell type [19, 20], since they are able to extend and retract their processes at a rate of 1.5 mm/min [20]. Furthermore, in response to a diverse combination of external and internal stimuli, microglia can acquire a variety of “activated” phenotypes which vary from the highly pro-inflammatory “M1 phenotype” to the neuroprotective (alternatively-activated) “M2 phenotype” [5, 11, 21-24]. Harmful stimuli, such as pathogen-associated molecular patterns and/or damage-associated molecular patterns, lead to microglia activation in the M1 phenotype, which produces pro-inflammatory cytokines, nitric oxide and reactive oxygen species [5, 11, 21-24]. In contrast, interleukin-4 and/or 13 induce the M2 alternatively-activated microglia which produce anti-inflammatory cytokines and neurotrophic factors [5, 11, 21-24]. Moreover, the amount and diversity of receptors expressed by microglia in these different activation states are dramatically dissimilar and change depending on the tissue conditions [5, 11, 21-24]. To make this scenario even more complex, it has been shown that all these microglial phenotypes can co-exist within the same brain region under normal conditions [21, 22], which might produce a delicate balance between pro-inflammatory and anti-inflammatory conditions [5, 11, 21-24]. It has been proposed that the alteration of this balance is involved in several pathological conditions [5, 11, 21-24]. Thus, this microglial diversity and its constant change must be taken into consideration while assessing the role of microglia in brain function and dysfunction.
As mentioned, microglia are a highly motile cell type that is constantly surveying neural activity by contacting pre- and post-synaptic elements [2, 7, 19, 20]. In fact, microglia are constantly modulating synaptic function [9]. For instance, microglia-depleted brain slices exhibit increased excitatory synaptic activity, which is mainly produced by increased synaptic innervation [9]. Furthermore, this modulation can be reversed when slices are replenished with new microglia [9]. In vitro, addition of microglia decreases synaptic activity [9] and increases Na+ current density [25]. Moreover, an enhancement in the expression of NMDA receptors is observed when conditioned medium obtained from activated microglia is applied to primary cultures of hippocampal neurons or directly injected into the brain [26]. These modulatory effects of microglia, or of microglial mediators, are reflected in changes of synaptic coupling in the hippocampus [26]. Altogether, these observations clearly indicate that microglia themselves and/or their mediators are constantly regulating neuronal network excitability [4].
As microglia can regulate neuronal excitability and communication, neurons can exert a reciprocal modulation of microglial activity, which is revealed by the dramatic changes in microglial function produced by changes in neuronal activity. For instance, there is a reversible reduction in the dynamics of microglia-synapse contacts upon a reduction in neural circuit input [2,7]. Accordingly, the increase in neural network input increases microglia-neuron contacts [8]. In contrast, reducing neural network activity decreases the incidence of microglia-neuron physical contact [27]. Neuron-dependent regulation of microglial function involves neuronal release of different mediators such as ATP [28-30] (Table 1), glutamate or GABA [29], which can be sensed by neighboring microglia [3]. Thus, microglia can survey their environment and respond to changes in it, not just by constant physical contact with neurons but by expressing an overwhelming diversity of receptors that includes receptors for all known neurotransmitters [3]. Microglia also express receptors for microglia-regulating signals that can be roughly divided into two broad categories: the so-called ‘Off’ and ‘On’ signals [31, 32]. Although the ‘Off’ signals have been classically associated maintaining the microglial “resting” state [32] and the ‘On’ signals have been classically associated with their “activation” [32], the evidence reviewed earlier indicates that the specific effects induced by the activation of any of these signals will be influenced by the phenotypic diversity of microglial cells present in any given neuronal circuit and the activity of such circuit, which is indeed constantly modulating microglial function and responsiveness. Thus, the purpose of this review is to evaluate the available information on the cell-specificity of several of the ‘On’ signals (Table 1) and their possible use to understand the role of microglia in neural network function and dysfunction. The identification of specific microglia ‘On’ signals will provide experimental tools to modulate the activity of this cell type (Table 1), in order to evaluate its impact on other components of the neural circuits, and will also contribute to the identification of therapeutic approaches to ease pathological conditions related to microglial dysfunction [33]. This review does not aim to provide information about all microglial ‘On’ signals, which have been extensively reviewed before [for examples, see 3, 34, 35], but aims instead to identify some receptors and experimental approaches that would modulate mainly microglial activity, without a major modulation of other cell types present in the CNS. Since such microglial-specific receptors and experimental approaches are virtually unknown, we will discuss several candidates that are currently being used and provide information on their microglial specificity by contrasting their effects with those produced on other cell types, if any. Finally, we will provide some examples of the use of these experimental approaches to understand the role of microglia in neural network activity under physiological and pathological conditions.
Table 1.
Main microglial activators.
| Microglial Activator | Molecular Targets | Microglial Mediators | Refs. |
|---|---|---|---|
| Lipopolysaccharide | CD-14, SR-A or CD204, TLR4, CR3 | Cytokine release, ROS and NO production | [36-48, 299] |
| High mobility group box 1 | TLR4, CR3 | Cytokine release, ROS and NO production | [76, 77, 107] |
| Heat shock proteins 60 & 70 | TLR4, TREM-2 | Cytokine release, ROS and NO production, phagocytosis | [76, 79, 80, 363] |
| Monophosphoryl Lipid A | TLR4, | Cytokine release, ROS and NO production | [76, 83] |
| Complement 3 | CR3 | Phagocytosis, ROS production | [42, 95, 97, 98, 103] |
| Amyloid beta | CR3, SR | Phagocytosis, ROS production | [42, 91, 185] |
| Zymosan | CR3, Dectin-1 | Phagocytosis, ROS production | [97, 412] |
| CX3CL1 or fractalkine | CX3CR1 | Cytokine release, phagocytosis, migration | [121-140] |
| ATP | P2X4, P2X7, P2Y2, P2Y6, P2Y12 | Cytokine release, ROS and NO production, phagocytosis, migration |
[146-180] |
| Fragmented DNA | SR-A | Cytokine release, phagocytosis | [187] |
| Unmethylated CpG dinucleotides | TLR9 | Cytokine release, ROS and NO production, phagocytosis | [204-214] |
| Polyinosinic-polycytidylic acid | TLR3 | Cytokine release | [68, 216, 217, 342] |
| Phosphatidylserine | SR-BI, CD36, PS-R, BAI1, TIM-4, MFG-E8, Gas6, TREM-2 | Phagocytosis, PGE2 and TGF-β1 production, reduction of cytokine release, and of ROS and NO production | [223-231, 345] |
| CD200 | CD200R | Reduction of cytokine release, and of ROS and NO production |
[369-372] |
| Lysophosphatidic acid | LPA1–LPA6 | Cytokine release, ROS and NO production, migration | [378-380] |
| β-glucan | Dectin-1, CR3, SR | Phagocytosis, ROS production | [68, 407, 410, 411] |
| Particulate β-glucan | Dectin-1 | Phagocytosis, ROS production | [401, 409] |
LIPOPOLYSACCHARIDE
The most popular pharmacological strategy to activate microglia has been lipopolysaccharide (LPS, also known as lipoglycan or endotoxin; Table 1), which is the major component of the outer membrane of Gram-negative bacteria. LPS binds different receptors located on microglia including CD14 [36, 37], scavenger receptor A (SR-A or CD204, [38, 39]), Toll-like receptor 4 (TLR4, [37]) and complement receptor 3 (CR3, [40-42]) (Table 1). In all cases, the activation of these receptors by LPS leads to microglial activation [43-46], the release of several cytokines [43, 45-48] and/or reactive oxygen species (ROS, [43, 48]) (Table 1), which subsequently modulate several aspects of neural function [44, 45, 48]. Despite the broad variety of microglial receptors activated by LPS, most of its effects on microglia have been associated with the activation of TLR4 [44, 49-51], and to a lesser extent with the activation of CR3 [42] (Table 1). Regarding the impact of LPS application on neural network function, it has been shown that acute LPS application activates microglia and increases excitatory synaptic activity [44, 52], neuron excitability [52] as well as population neural network activity [45, 52]. Neural network activity is also increased by chronic application of LPS [48,53], which is associated with changes in GABAergic innervation [53] and modulation of the amplitude of both GABAergic [47] and glutamatergic potentials [48]. LPS can also reduce both short-term [54] and long-term synaptic plasticity [54-56]. The changes in network excitability induced by LPS can lead to an overexcitatory state. In fact, LPS can directly induce epileptiform activity [33] or can exacerbate an already established hyperexcited state [44, 52]. Moreover, LPS increases the susceptibility for epileptic activity [46, 57-59]. Altogether, the reviewed data indicates that microglial activation with LPS modulates several aspects of neural network function but also can lead to pathological network states. In this regard, we have previously shown that microglial activation with LPS modulates the respiratory network, affecting breathing generation and autoresuscitation after hypoxic conditions [4], which agrees with previous findings that peripheral application of LPS affects breathing [60-64]. We also demonstrated that the effects of LPS were occluded in the presence of a microglial inhibitor (minocycline, [60]), were absent in microglia-depleted tissue, and were still present when astrocyte metabolism was blocked [4]. Together, these findings suggest that LPS-induced respiratory network modulation involves microglial activation.
Despite the fact that LPS has been a very popular pharmacological tool to evaluate the role of microglia in brain function and dysfunction, several caveats have to be taken into consideration. First of all, without ignoring the fact that TLR4 is abundantly and preferentially expressed in microglia [50, 51, 65, 66, 70-73], there is some contradictory evidence indicating the presence of TLR4 both in astrocytes [67, 68] and in subsets of neurons [69]. In most cases, the presence of TLR4 in non-microglial cells has been found under pro-inflammatory conditions [68, 69] and, if found, such expression is less than in microglia [66]. Although the presence of TLR4 in non-microglial cells could prevent the conclusion that any given effect of LPS is mediated exclusively by microglia, some evidence strongly supports the use of LPS as a plausible and specific TLR4-dependent microglial activator. First, there is evidence that purified neurons and astrocytes, in the absence of microglia, do not express TLR4 [44, 50, 51], that the activation of astrocytes by LPS requires the presence of microglia [44, 68, 70-73] and that the sensitivity of neurons to pro-inflammatory mediators, including LPS, requires the presence of microglia [74]. Alternatively, to evaluate the potential contribution of astrocytes to the effects induced by LPS, we and others have made the control experiment of testing the effect of LPS in the presence of inhibitors of astrocyte metabolism [4, 44]. In our case, the effects of LPS on the activity of the respiratory network were similar to those observed in the presence of the astrogliotoxin fluorocitrate, as occurs in other preparations [75], leading us to conclude that the effects of LPS on the activity of the respiratory network were induced mainly by microglial activation and do not require active astrocytes [4]. Note that this has not always been the case, since some effects of LPS have been blocked by astrogliotoxins in other experimental paradigms [44]. In such cases, the results were interpreted as a secondary recruitment of astrocytes after primary microglial activation with LPS [44]. An alternative strategy that we and other groups have used to support the idea that the effects of LPS are mediated by microglia modulation, is to evaluate alternative microglial “activators” under identical conditions which, in our case, produced effects similar to those of LPS [4]. Finally, to confirm the participation of microglia in the effects of LPS, we and others have corroborated the reduction of such effects in the presence of microglia inhibitors (e.g., minocycline, [4]) or after depleting the tissue of microglia (e.g., liposomal clodronate, [4]). Thus, with the proper controls, the use of LPS is still a powerful tool to understand the role of microglia in brain function [4, 44]. Aside from LPS, TLR4 is a validated target to regulate microglia; this receptor can also be activated by alternative agonists including high mobility group box 1 (HMGB1, [76,77]) (Table 1), Complete Freund's adjuvant (CFA, [78]), and heat shock protein 70 (Hsp70, [76, 79, 80]) (Table 1). In contrast, TRL4 can be antagonized by LPS from Rhodobacter sphaeroides (LP-RS, [81]), hyaluronan [82], or even by TRL4 antibodies [77]. All these pharmacological tools can be used to study the role of microglia in neural function and dysfunction and can complement, or control, the results obtained with LPS. In fact, all these TLR4 regulators have been shown to alter synaptic transmission and its plasticity [82, 77-80]. Other TLR4 agonists such as Monophosphoryl Lipid A [76, 83] (Table 1), Hsp60 [76] (Table 1), surfactant protein A (SPA, [76]) and methemoglobin [81], or TLR4 antagonists such as TAK-242 [81], CLI-095 [84] and polymyxin B sulfate [85] have not yet been tested for their effects on neural network function.
As mentioned, LPS can activate different receptors besides TLR4, such as SR-A [38, 39] and CR3 [40-42] (Table 1). Despite the fact that both receptors are abundantly expressed in microglia [42, 86-92], it must be considered that SR-A can also be expressed in astrocytes [42, 90, 93], and that there are reports of CR3 expression in some astrocytes [94] and neurons [94], as will be reviewed in the next section.
COMPLEMENT RECEPTOR 3
The complement system is a very well-conserved part of the immune response involved in lytic attack and removal of pathogens and debris by means of phagocytosis [95, 96]. Complement proteins, ligands and receptors are widely expressed in neurons and glia and seem to be involved in active synaptic remodeling as well [95, 97, 98]. Thus, mice lacking some complement proteins exhibit sustained defects in synaptic connectivity [97, 98]. The complement system is complex, and will not be reviewed here (for a review, see
[95, 96]); it converges on complement 3 (C3), which binds to the C3 receptor (CR3, MAC-1 or CD11b/CD18) in phagocytic cells, including microglia [95,97,98] (Table 1). Whereas astrocytes and neurons express high levels of C3 and other complement proteins in physiological [97-99] and especially in pathological conditions [99-103], microglia almost exclusively express CR3 [103]. In fact, the 0X42 antibody that recognizes CR3 has been widely used as a specific microglia marker [86, 87, 89]. Despite the over-whelming evidence that CR3 is expressed only in microglia, there are reports that CR3 can be found in astrocytic cell lines and primary astrocytes [94,104] as well as in subsets of neurons [8-18, 94, 103], mainly during early development [105, 106]. While CR3 is almost exclusively expressed by microglia, not all microglial cells express the same CR3 levels; some cells even lack CR3 expression in control conditions [21]. Thus, when evaluating the effects of microglial activation by CR3 on neural network function, it must be considered that such activation might involve different microglial populations and produce different levels of activation [21]. Despite this caveat, several pharmacological tools are available to modulate microglia through CR3. CR3 can be activated by its classical ligand C3 [97, 103], but also by fibrinogen [97, 98], amyloid beta [91] (Table 1), HMGB1 [107] (Table 1), ICAM-1 (CD54, [97, 98]), LPS [40, 41, 97, 98], gp63 [108], zymosan [97, 98] (Table 1) and neutrophil inhibitory factor (NIF, [97]).
Stimulation of microglial CR3 results in phagocytosis and production of ROS [42, 97, 103] (Table 1). As mentioned, CR3 participates in microglia-mediated synaptic remodeling [97, 109, 110] and the genetic ablation of CR3 and C3, as well as the pharmacological perturbations of these proteins, results in deficits in synaptic remodeling [97, 111, 112]. In contrast, lack of C3 avoids synapse and neuron loss induced by aging, which is reflected in improved synaptic plasticity and cognition [96]. Moreover, CR3 activation leads to an acute modulation of synaptic transmission that does not involve phagocytosis and structural remodeling. For instance, acute C3 application reduces synaptic density and dendritic complexity in hippocampal cultures, which is blocked by the CR3 antagonist SB290157 [106]. Interestingly, blocking endogenous activation of CR3 reduces synaptic density and dendritic complexity, indicating that basal activity of this receptor is required for proper synaptic function [106]. Furthermore, activation of CR3 in hypoxic conditions triggers long-term synaptic depression (LTD), which requires NADPH oxidase activation and the release of ROS [42]. CR3 activation leads to aberrant dendritic morphology and neuronal excitability [106]. Interestingly, a continuous lack of C3 changes short-term synaptic plasticity [103] and enhances cognitive performance in otherwise normal animals [103]. In contrast, blocking CR3 with SB290157 in APP transgenic mice (a model of Alzheimer’s disease) ameliorates amyloid plaque load and microgliosis [103], which restores learning and memory in this model [106]. We found that activating CR3 with leukadherin 1 [113] alters respiratory rhythm generation [4]. Interestingly, leukadherin 1-induced effects were not identical to those produced by LPS, which indicates that different microglial phenotypes induced by these two activators can differentially modulate neural network function [4].
Other receptors involved in the complement cascade, mainly CR5 and C1qR, have also been used to activate microglia [114] and have been shown to modulate neural function [115, 116]. However, correlating their effects with microglia-induced modulation would be harder than those induced by CR3, since it is well known that CR5 is abundantly expressed by astrocytes [117] and neurons [118]. Similarly, C1qR is also expressed by these two, non-microglial cell types [119, 120].
FRACTALKINE
Chemokine (C-X3-C motif) ligand 1 (CX3CL1 or fractalkine) and its receptor CX3CR1 represent a neuron-microglia bidirectional communicating system that modulates the activity of both cell types [121, 122] (Table 1). CX3CL1, whose expression is higher in the brain than in the periphery [123], was the first chemokine found to be produced by neurons [121, 124-129], although it is also produced by astrocytes [125-127, 130, 131] or even by microglia [122, 130]. In contrast, CX3CR1 is almost exclusively expressed in microglia [121, 123, 124]. However, its expression has also been reported in subsets of neurons, mainly in culture [122, 124, 128, 132, 133]. CX3CR1 was reported in cultured astrocytes as well [130], which has not been confirmed by other groups in vivo [134]. Furthermore, the development of transgenic mice expressing different reporter proteins under the control of the promoter for the CX3CR1 gene have shown reporter expression exclusively in microglia [19, 20, 134, 135]. A recent report has indicated that when CX3CR1 are expressed by neurons, their ligand sensitivity is smaller than those expressed by microglia [129] and that a higher concentration of fractalkine would be required to activate CX3CR1 in this non-microglial cell-type [124, 129, 133].
Fractalkine has been extensively used to activate CX3CR1 on microglia, which induces migration, cytokine release and phagocytic activity [121, 135] (Table 1). Regarding neural network modulation, fractalkine has been reported to reduce excitatory synaptic transmission [136] involving both presynaptic [124, 137, 138] and postsynaptic effects [132, 138, 139]. The latter are mainly mediated by adenosine release from microglia [138, 139]. In contrast to its effect on excitatory synapses, fractalkine enhances inhibitory synaptic transmission [128, 129, 140], and it also modulates long-term synaptic plasticity [129, 136, 141, 142]. These effects of fractalkine might have brain-wide consequences since a reduction in prefrontal-hippocampal theta coupling has been observed in mice lacking Cx3CR1 [143]. The effects of fractalkine can be reduced by antibodies against fractalkine itself [128] or against CX3CR1 [130, 134], as well as by Cx3CR1 antagonists such as F1 [133] and AZ12201182 [144]. The effects of these Cx3CR1 antagonists on neural network function are yet to be determined. We found that activating CX3CR1 with fractalkine modified respiratory rhythm generation [4], which agrees with a recent finding that knocking out CX3CR1 avoids respiratory alterations observed in a transgenic mouse model of Rett Syndrome [145].
P2Y6/12 RECEPTORS
When cells are injured, they release or leak ATP and other purines, as well as several of its metabolites, which activates microglia through a variety of purinergic receptors including P2X4, P2X7, P2Y2, P2Y6, and P2Y12 [146-150] (Table 1). Purines are powerful microglia activators that induce chemotaxis, phagocytosis and cytokine release [146,149-151] (Table 1). However, most purinergic receptors expressed by microglia are also expressed by astrocytes and neurons [147, 148]. This seems not to be the case for P2Y6 and P2Y12, as will be reviewed next.
P2Y6 is expressed in microglia, but not in astrocytes [152, 153], although there is a pharmacological report suggesting the presence of P2Y6 in cultured astrocytes [154, 155], and some reports locate P2Y6 in subsets of neurons, mainly in the periphery [156, 157]. Interestingly, the expression P2Y6 in microglia is sensitive to neuronal excitability [158]. As mentioned, P2Y6-mediated microglial activation induces phagocytosis of debris at the site of damage [147, 148], which can also be induced by the endogenous P2Y6 agonist UDP [158]. The P2Y6R is activated preferentially by UDP and to a lesser extent by UTP [158]. Little is known about the role of P2Y6 in neuronal excitability and synaptic transmission. However, the UDP-sensitive P2Y6 receptor produces inhibitory effects on spinal pain transmission in a neuropathic pain model [159]. In addition, Barragán-Iglesias et al. [160, 161] showed that the selective P2Y6 antagonist MRS2578 [151] reduces tactile allodynia in spinal nerve ligated rats, a reduction that was reproduced by the microglial inhibitor minocycline. In contrast, allodynia can be pharmacologically induced by the selective P2Y6 agonist PSB0474. Moreover, they found that nerve injury increases P2Y6 levels in the same fashion as microglial activation. Finally, they demonstrated that minocycline reduced both microglial activation and P2Y6 overexpression during neuropathic pain [160, 161].
Another purinergic receptor that seems to be expressed almost exclusively in microglia is P2Y12 [30, 147, 148,157, 162-165]. However, P2Y12 receptors have also been found in oligodendrocytes/myelinated fibers [166,167], in cultured astrocytes [168], as well as in some neurons [156, 167], mainly in the periphery [169]. This receptor, which is sensitive to ADP [170], is involved in microglial chemotaxis, and the loss of its expression in microglia results in decreased process extension and migration following focal injury [171, 172]. Consistent with this, P2Y12 knockdown using morpholinos in zebrafish results in a complete block of microglial response to injury [172]. Similarly to P2Y6, there is scarce evidence that P2Y12 modulates neural excitability. However, it has been shown that P2Y12 activation reduces synaptic transmission [173, 174] involving the activation of NADPH oxidase [174]. Moreover, it has been reported that P2Y12 regulates trigeminal excitability [169] and seems to be involved in spinal [164] and trigeminal [175] pain transmission. In fact, the P2Y12 antagonists MRS2395, AR-C69931MX or clopidogrel can reduce pain [163, 164]. Clopidogrel or lack of P2Y12 affect cortical plasticity induced by input deprivation [165]. Although the P2Y12 agonist 2MeSATP increases respiratory rhythm generation, this effect was associated primarily with P2Y1 [176]. Thus, the development of more specific pharmacological tools to modulate purinergic receptors is required to test the role of these receptors in microglial activation and their influence on neural network function and dysfunction.
Another purinergic receptor that leads to the pro-inflammatory activation of microglia is P2X7 [177-180]. P2X7 is an ionotropic receptor expressed by microglia [177-179] and also by some neurons [177]. The expression of P2X7 in astrocytes is still uncertain [177, 178, 180]. The activation of P2X7 leads to the release of cytokines, nitric oxide and reactive oxygen species [178-180]. The P2X7 agonist benzoylbenzoyl-ATP can activate microglia and secondarily induce neuronal death [179], which can be prevented by the P2X7 antagonist Brilliant Blue G [179]. Another P2X7 antagonist is A740003, which can reduce ATP-mediated microglial activation [180]. Interestingly, the expression of P2X7 increases during the activation of neuronal networks [177] and, coincidentally, the P2X7 antagonist JNJ-47965567 can reduce neural network hyperexcitability [177].
SCAVENGER RECEPTORS
The scavenger receptor (SR) family represents a subset of pattern recognition receptors [90, 181] that bind polyanionic ligands [181], including advanced glycosylation end products (AGEs) [182], LPS [183] (Table 1), and lipoteichoic acid [182, 184]; as well as amyloid beta [185] (Table 1), viruses [186], and fragmented DNA [187] (Table 1), among other molecules related to cell damage or foreign agents.
Until now, 6 families of SRs have been described, named from SR-A to SR-F, but there are still 3 SRs that remain unclassified: RAGE, CD136, and SR-PSOX [90]. All these receptors are expressed both in microglia and astrocytes [90, 188]. However, in contrast to other SRs, SR-A (CD204) is more prominently expressed by microglia [42,93,185,189, 190], with some reports indicating its presence in astrocytes in culture [42, 93, 190]. SR-A activation leads to the induction of phagocytosis [88] and the production of IL-1beta, NO [93], and H2O2 [101]. Regarding the SR-A pharmacological interactions, as mentioned, SR-A binds to amyloid beta [42, 91] (Table 1), the heptapeptide XD4 [42], fucoidan [92, 191], and fragmented DNA [187] (Table 1). The SR-A inhibitor fucoidan is a sulfated, fucosylated polymer from brown algae that has been used as a microglial inhibitor [42, 91, 92, 192]. In fact, fucoidan has shown therapeutic potential for Alzheimer’s disease [193], ischemia–reperfusion injury [194], and depression disorder [195]. Furthermore, fucoidan reduces allodynia and hyperalgesia by reducing inflammation [196]. Also, we have shown that fucoidan affects respiratory rhythm generation in a similar fashion as minocycline does [4].
As mentioned above, fragmented DNA can activate SR-A [187] (Table 1). Interestingly, normal neuronal activity [197], as well as apoptosis or necrosis, induces DNA fragmentation [198], which then activates microglia [187, 199]. In fact, brief incubation with fragmented DNA activates microglia and induces interleukin-1β overexpression by a fucoidan-sensitive mechanism [187] (Table 1). This effect is blocked by an SR-A antibody [187]. Interestingly, there are several pathological conditions, including neuro-inflammation, that induce DNA fragmentation and are correlated with alterations in synaptic markers [200, 201] and in synaptic plasticity [202, 203]. We have shown that fragmented DNA affects respiratory rhythm generation in a similar fashion as LPS does [4], suggesting that SR-A-mediated microglial activation regulates the respiratory network [4].
NUCLEIC ACIDS IN ABNORMAL CONFORMATIONS
As shown in the previous section, abnormal configurations of nucleic acids can activate microglia [187, 199]. Aside from fragmented DNA, there are other forms of nucleic acids that can activate microglia. For instance, bacterial and viral DNA containing motifs of unmethylated CpG dinucleotides (umCpG-DNA) induce microglial activation through TLR9 [204-210] (Table 1), which is a TLR mainly expressed in microglia [211]. TLR9 activation in microglia induces the production and release of cytokines and NO as well as phagocytosis [43, 205, 207,208, 212-214] (Table 1). However, it is important to note that TLR9 receptors are also expressed by astrocytes [67, 204,210] or even by subsets of neurons during development [213], and thus, astrocytes can also be activated by umCpG-DNA [209, 210, 214]. Nevertheless, regarding neural network modulation, it has been shown that TLR9 KO mice exhibit synaptic abnormalities [215]. It will be interesting to determine whether these alterations involve changes in microglia function.
Microglia can also be activated by double-stranded RNA (dsRNA) present in some viruses [216, 217]. Polyinosinic-polycytidylic acid (poly(I:C)) is a synthetic analog of dsRNA that activates TLR3 [68, 216, 217], which induces the production and release of various cytokines [68, 216, 217] (Table 1). Despite the fact that astrocytes are also responsive to double-stranded RNA, as well as to other abnormal conformations of nucleic acids [218], poly(I:C)-induced astrocyte activation requires the presence of microglia [68]. Regarding neural network modulation, poly(I:C) induces epileptiform activity via production of interferon-β [219]. In contrast, TLR3 deficiency impairs synaptic transmission and its plasticity [220].
PHOSPHATIDYLSERINE
Phosphatidylserine (PS) is normally expressed on the inner surface of the membrane bilayer in healthy cells and becomes exoplasmic during cell apoptosis [221, 222]. PS can then be recognized by a variety of receptors including class B scavenger receptors type I (SR-BI) [223], CD36 [222] as well as the PS direct and specific receptor (PS-R) [224-227] (Table 1). Activation of any of these receptors by PS leads to the induction of phagocytic activity [225, 228], but also reduces the production and release of cytokines and NO [225, 227-229]. Moreover, microglial modulation with PS leads to the production of anti-inflammatory mediators such as prostaglandin E2 (PGE2) and transforming growth factor-β1 (TGF-β1) [230, 231].
Different receptors can act as the PS-R, including brain angiogenesis inhibitor I (BAI1), stabilin-1 and 2 as well as T cell immunoglobulin and mucin 4 (TIM-4) [162, 224, 232-234] (Table 1). Regarding PS-induced phagocytosis, it was shown recently that BAI1 controls the formation of phagosomes and TIM-4 stabilizes them [234]. Additionally, indirect PS recognition by other receptors involves bridging proteins such as milk fat globule-EGF factor 8 [MFG-E8] and growth arrest specific gene 6 (Gas6) [235-241] (Table 1). These proteins usually have two binding sites; one site binds PS and the other binds receptors on microglia such as the vitronectin receptor (VNR) or Mer receptor tyrosine kinase (MERTK) [235, 236, 239, 240, 242, 243]. Together, all of these receptors and bridging proteins mediate PS-dependent phagocytosis of apoptotic cells by microglia [235, 236, 239, 240, 342, 243]. However, it has to be considered that most of the PS receptors are expressed by astrocytes and even neurons [90, 244, 245].
As for the pharmacological tools to study this complex system, it has been shown that the interaction between PS and its direct receptors can be blocked with annexin V [151, 246-248], with an antibody against PS [247] or with O-phospho-L-serine, a molecule that mimics the PS head group but blocks microglial PS receptors [249], thereby interfering with the uptake of apoptotic neurons by microglia [249]. As mentioned, there are different receptors that recognize MFG-E8 bound to PS [235, 236, 239, 240, 242, 243] (Table 1); this interaction can be blocked either by function-blocking MFG-E8 antibodies [250] or by the recombinant D89E mutant of MFG-E8 (rD89E) [236].
The VNRs, which are composed by the αvβ3 or the αvβ5 integrin, are found abundantly in microglia [240, 242, 243,251], but also in astrocytes [252, 253]. VNR activation in microglia induces phagocytosis [254] and cytokine production [253]. Interestingly, VNR-induced TNF-α production by microglia is more pronounced than that induced by identical conditions in astrocytes [253]. Furthermore, VNR-induced TNF-α production by astrocytes requires the presence of microglia [253]. Thus, it is likely that VNR-mediated effects are mainly due to microglial activation, at least in the initial stages. The most common pharmacological tool used to modulate VNR is the VNR inhibitor peptide cyclo(RGDfV) [151,254]. VNR can also be antagonized by the peptide RGD or VNR antibodies [252, 255] as well as by the antagonist TETRAC [256]. As mentioned, another receptor for PS, when bound to either MFG-E8 or Gas6, is MERTK [239], which is abundantly expressed in microglia [239, 240] but can also be found in astrocytes [257]. MERTK activation with PS can be blocked either by function-blocking anti-MFG-E8 antibodies [250], the recombinant D89E mutant of MFG-E8 (rD89E) [236], a soluble form of MERTK [258], or by the synthetic antagonists UNC1062 and UNC2025 [259]. MERTK can be activated by MFG-E8, Gas6 or PROS1 [260, 261].
Regardless of their possible lack of specificity for microglia (due to the modulation of non-microglial cell-types), several of the components involved in the PS-induced cascade have been shown to modulate neural network function. For instance, PS increases both glutamatergic [262, 263] and GABAergic transmission [264], and it reverts the reduction of LTP induced by LPS [265, 266]. Accordingly, RGD peptides affect neuron excitability [265, 267, 268] and modulate network interactions by increasing presynaptic vesicle density [269] and postsynaptic receptor density and activity [270-275]. Thus, RGD peptides modulate synaptic transmission [274, 276] and its plasticity [277-280]. BAI1 not only regulates synaptogenesis [281], it also modulates synaptic plasticity in the adult. In fact, mice lacking BAI1 have enhanced LTP and impaired LTD, the latter of which is associated with cognitive impairment [245]. Finally, whereas vitronectin regulates neuronal excitability [255], MERTK is constantly remodeling synaptic connectivity, even in adults [257, 282].
LIPOSOMES AND ALTERNATIVE CARGO CARRIERS
We have previously mentioned that microglia can be activated by apoptotic bodies exhibiting PS, which then get phagocytized [235, 236, 239, 240, 342, 243]. Furthermore, microglia can establish a bidirectional communication with other cell types in the CNS through extracellular vesicles, namely microvesicles (or ectosomes) and exosomes [283-287]. All cell types can release extracellular vesicles [283-287]. These extracellular vesicles can transmit nucleic acids and/or protein cargo [283-287], including cytokines [283-287]. In some cases, however, extracellular vesicles can transport pathogenic proteins such as prions, amyloid beta peptide and/or tau [283-287]. In fact, it has been proposed that extracellular vesicles can contribute to disease by the spreading of these pathogenic proteins [283-287]. Moreover, extracellular vesicles can also contribute to neuroinflammation [283-287]. In contrast, under physiological conditions, extracellular vesicles can modulate neural network function and plastic changes, and they can protect neurons from insults [283-287] through the modulation of microglial activity (e.g., synaptic pruning) and/or by the release of extracellular vesicles from microglia [283-287].
A synthetic alternative to extracellular vesicle-mediated communication is liposomes, which are artificially prepared spheres of a desired diameter, consisting of concentric phospholipid bilayers separated by aqueous compartments [288, 289]. These structures are formed when phospholipids (e.g., PS or phosphatidylcholine) are dispersed in water. Thus, the phospholipid molecules will find a conformation in which their hydrophobic fatty acid chains are prevented from making contact with water. Part of the aqueous solution together with dissolved hydrophilic molecules can be encapsulated during the formation of liposomes [288, 289], making them a promising vehicle for drugs that would modulate the activity of cells that internalize them by phagocytosis [289], including microglia [289-292] and, to a lesser extent, astrocytes [293], Müller cells [290] or even neurons [294]. Liposomes are not toxic [288], but they can induce microglial cell death if they contain toxic compounds [292, 295, 296].
Liposomes have been used for several purposes while studying microglia. For example, PS-containing liposomes (PSLs) can mimic the effects of apoptotic cells [297, 298] and modulate microglia activity through the pathways described in the previous section [224, 227]. Regarding neural network function, it has been shown that PS-containing liposomes can counteract LPS-induced impairment of LTP [265].
In addition to the use of liposomes as PS carriers, this preparation can be used to deliver a variety of agents including LPS [299], minocycline [299], antiinflammatory drugs [290, 300-303], RGD [301], enzymes [304-306], fluorescent dyes [290, 291], hormones [307, 308], antivirals [309], protease inhibitors [310], ion-channel modulators [311], antibiotics [312, 313], antioxidants [293, 306, 314], plasmids [315], signaling-pathway modulators [296] and toxic compounds [292, 295, 296]. Just to give an example of their use, liposomes containing superoxide dismutase can be incorporated into microglia, which increases their reductive power and favors retinal activity [306]. Furthermore, the same liposomal preparation is neuroprotective in different pathological conditions [304, 305]. Regarding neural functioning, a liposome containing hemoglobin can restore LTP in ischemic animals [316].
An alternative strategy to modify microglia function is to modulate its phenotype by transgene expression in genetically modified animals (for a recent review see [317]). Alternatively, microglia can be modified by transfecting them with genes using various techniques [318-320], including viral infection [321]. It is important to consider that microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation [320, 322]. Previous studies with lentiviral vectors have shown effective gene transfer into microglia; however, lentiviral infection was associated with modest toxicity and mild inflammatory activation [320]. So far, it has been shown that microglia transfection with recombinant adeno-associated virus (rAAV), serotype 2 (rAAV2, [320]), yields high transduction and causes minimal toxicity or inflammatory response [320]. In contrast, rAAV of serotypes 5, 6, 8 and 9 can transduce microglia but might induce an undesired inflammatory reaction [320]. Another report has shown that hippocampal microglia have a preference for rAAV6 and rAAV8, while microglia in striatum and cortex exhibit different preferences [323], which is another manifestation of the well-documented microglial heterogeneity.
Aside from the wealth of evidence collected from transgenic animals supporting the role of microglia in proper network wiring (for a recent review see [317]), there are few studies regarding the role of microglia genetically modified by transfection in neural network function [324, 325]. For instance, it has been shown that the synaptic depression induced by oxygen and glucose deprivation is reduced when microglia express a dominant-negative form of RAGE [325]. In addition, when microglia lack proper KARAP/DAP12 function, LTP is enhanced and becomes NMDAR independent [324]. Moreover, down-regulation of microglial P2X7R blocks LTP [319].
Nanoparticles are an alternative to deliver cargo into microglia [217]. They can be coupled to drugs or other desired cargos [217, 326], which will be preferentially incorporated into microglia to modify their activity [327-330] or to become reporters of neuroinflammation [330]. However, nanoparticles can also be incorporated, though less efficiently, into other glial cells [328, 331] or even into neurons [331]. Nevertheless, nanoparticles have already been used to bring minocycline or other inhibitors into microglia [327, 328, 329]. Notably, some nanoparticles can damage [334-336] or have direct inhibitory [332] and excitatory [333-335] effects on microglia. Regarding their effects on neural network function, gold or silver nanoparticles were found to increase neuronal excitability and network activity [337, 338], whereas phenytoin-loaded nanoparticles reduce hyperexcitation [339]. Regarding synaptic transmission and its plasticity, nanoparticles containing zinc oxide restore LTP inhibited by LPS [340], and cholesterol-loaded nanoparticles prevent the synaptic dysfunction observed in Huntington-related transgenic animals [331]. In contrast, basal synaptic transmission [337] and LTP are affected by silver nanoparticles [337].
T CELL IMMUNOGLOBULIN AND MUCIN DOMAIN 3 (TIM-3)
T cell immunoglobulin and mucin domain 3 (Tim-3) is a galectin-9 receptor constitutively expressed on cells of the innate immune system in both mice and humans, where it can synergize Toll-like receptor function [195, 341-343]. In the CNS, Tim-3 is expressed almost exclusively in microglia [195, 341, 344-346], with negligible expression in astrocytes [195, 346]. In contrast, galectin-9 is produced by astrocytes and neurons [342, 345, 347, 348] and, when released onto microglia, it induces TNF production [342, 345]. Moreover, galectin-9 enhances poly(I:C)-induced microglial production of TNF and IL-6 [342]. As a pharmacological tool to manipulate Tim-3 in microglia, galectin-9 has the caveat of being recognized by diverse receptors besides Tim-3 [349-351]. Fortunately, there are both activating and inhibiting Tim-3 antibodies that can be more specific than galectin-9 [341, 345, 346]. As far as we are aware, there are no studies regarding the role of Tim-3 in neural network function.
TRIGGERING RECEPTORS EXPRESSED ON MYELOID CELLS 2 (TREM-2)
TREM-2 is a member of the immunoglobulin superfamily of receptors that mediates microglial activation acting with its co-receptor, the DNAX-activating protein of 12 kDa (DAP12, [352]). Interestingly, genome-wide association studies have identified changes in TREM-2 as risk factors for Alzheimer’s Disease [353, 354]. TREM-2 is constitutively expressed on microglia [355-361] but not on astrocytes [360, 361]. Although the sporadic expression of TREM-2 in subpopulations of neurons and oligodendrocytes has been described [355, 360, 362], such expression has not been confirmed by other groups [360, 361]. Despite the fact that TREM-2 is expressed almost exclusively by microglia, not all microglial cells express the same levels of TREM-2, and some cells even lack TREM-2 expression under controlled conditions [360]. Among the pharmacological tools to modulate TREM-2, Hsp60 is the main endogenous agonist of the microglial TREM-2 receptor [363]. TREM-2 binds PS, as already mentioned [345], as well as anionic carbohydrates, anionic bacterial products, and other phospholipids [364, 365]. In a more specific manner, TREM-2 can be activated [366] or inhibited [367] by several antibodies. TREM-2 activation leads to the induction of a phagocytic microglial state [345] and the promotion of microglial survival [345]. As for its influence on neural network function, the absence of DAP12 leads to reduced GluR1 and GluR2 levels in the post-synaptic density, whereas it increases the inward rectification of synaptic AMPARs [324] and increases the AMPA/NMDA ratio [368]. Furthermore, lack of DAP12 enhances LTP, which becomes NMDAR independent [324].
CD200 RECEPTOR
The Cluster of Differentiation 200 (CD200) receptor (CD200R, also named the OX2 receptor) and its ligand CD200 (OX2) are both cell surface glycoproteins that contain two immunoglobulin domains [369-372]. CD200 is expressed on astrocytes [370, 372, 373], neurons [369, 373,374] and oligodendrocytes [370, 373] but not on microglia [371]. In contrast, expression of the CD200R is restricted almost entirely to microglia [369-372], although there is evidence that it can be expressed at very low levels in astrocytes and oligodendrocytes under inflammatory conditions [336, 373]. Regarding the pharmacological tools to study the influence of this receptor on microglia, it is possible to disrupt CD200-CD200R binding with CD200-blocking antibodies [375, 376]. Moreover, lack of CD200 [376] increases microglial activation, whereas agonistic antibodies [336] or CD200 itself [373, 377] reduce microglial activation. With respect to neural network functioning, LTP is impaired in CD200-deficient mice, which become more sensitive to pro-inflammatory conditions [77]. In contrast, CD200 application protects LTP against the impairment induced by aging and by LPS [377].
LYSOPHOSPHATIDIC ACID RECEPTOR 5
Lysophosphatidic acid (LPA) is a bioactive lipid mediator involved in many physiological functions including cellular proliferation, prevention of apoptosis, cell migration, cytokine and chemokine secretion, platelet aggregation, smooth muscle contraction, and neurite retraction [378]. LPA signals through six known G-protein-coupled receptors in a variety of cell types, including astrocytes and microglia [LPA1–LPA6, 378, 379]. Interestingly, LPA5 (GPR92) is expressed almost exclusively in microglia [379, 380] and is barely detectable in astrocytes [381, 382]. LPA5 is also expressed by peripheral neurons and their nerves [65, 383] as well as by neurons in the spinal cord [65]. However, we are aware of no publications regarding LPA5 expression in neurons located in other regions of the CNS. LPA5 leads to the activation of microglia and promotes their migration [380]. Pharmacological tools to modulate LPA5 activity include agonists such as farrnesyl pyrophosphate or monophosphate [384], sn-2 alkyl OMPT analogs [385] or antagonists such as diphenyl pyrazole carboxylic acid [386]. Regarding neural network function, despite the wealth of evidence showing that LPA modulates synaptic transmission and its plasticity [e.g., 386], the role of LPA5 and microglia in these processes is still unknown. However, this receptor must be involved in the regulation of synaptic transmission or neural excitability since mice lacking LPA5 are protected against neuropathic pain [65].
SINGLE-IG-INTERLEUKIN-1 RELATED RECEPTOR (SIGIRR)
SIGIRR also known as TIR8/IL-1R8 is a receptor whose ligand-binding capacity and signal transduction are not yet known [387]. However, it exerts significant anti-inflammatory effects throughout the immune system [388, 389]. For instance, SIGIRR deficiency enhances susceptibility to multiple autoimmune and inflammatory-associated conditions [388, 389] as well as to the activation of IL-1R and TLR4 [390]. It has been proposed that sensitization of the immune response in the absence of SIGIRR is due to the increased expression of IL-1R and TLR4 [391]. Microglia, rather than astrocytes, are the primary glial cells expressing SIGIRR in the CNS [392]. Although SIGIRR has been found in astrocytes and neurons in culture [393], its functionality in these cell types has not yet been determined [391, 392]. Interestingly, SIGIRR seems to be involved in neural network function, since mice lacking SIGIRR show deficits in hippocampal-dependent memory and LTP, which correlates with an increase in TLR4-associated signaling and the overexpression of HMGB1 [392]. As far as we are aware, there are no SIGIRR-specific agonists or antagonists available to evaluate the role of SIGIRR and microglia in neural network function and dysfunction. However, the probiotic Lactobacillus jensenii and the TLR2 agonist Pam3Cys4 were reported to increase SIGIRR in a TLR2-dependent manner [394].
SIALIC ACID BINDING IG-LIKE LECTINS-3(SIGLEC-3, CD33)
Siglecs bind to the sialic acid cap of the intact glycocalyx [34, 395]. Siglecs are single-pass (type 1) transmembrane proteins with variable numbers (1-16) of Ig-like constant region type 2 (C2-set Ig-like) domains and an amino-terminal Ig-like variable (V-set Ig-like) domain that bears the sialic-acid-binding site [396-398]. They associate with the ITAM-containing adaptor protein DAP12 via a positively charged lysine residue in their transmembrane domains [399]. A member of the Siglec family, Siglec-3, has been reported on macrophages and microglia [398, 400] and seems to be absent in astrocytes, oligodendrocytes and neurons [400]. As occurs for other microglial receptors, CD33 expression is increased in microglia by LPS [400]. Interestingly, genome-wide association studies have identified changes in CD33 as risk factors for Alzheimer’s Disease [401]. CD33 SNP rs3865444, which protects against Alzheimer’s Disease, leads to reductions in the microglial expression of CD33 and a decrease in the levels of insoluble amyloid beta in the Alzheimer’s Disease brain [402]. Furthermore, murine microglia lacking CD33 show increased amyloid beta uptake [402]. As for the pharmacological tools to modulate CD33, it has been shown that antibodies against CD33 lead to the production of proinflammatory cytokines [403], an effect that is reproduced by sialic acid removal with neuraminidase and blocked with sialyllactosamine [403]. To the best of our knowledge, there are no reports of CD33-mediated modulation of neural network function. Of note, the CD33-related Siglec-E has also been detected on microglia, but not on neurons, and it seems to be involved in neuroprotection [404]. The use of this receptor as a microglial-specific target needs still to be supported.
DENDRITIC-CELL ASSOCIATED C-TYPE LECTIN-1 (DECTIN-1)
Dectin-1 is a C-type lectin receptor of the C-type lectin NK receptor-like family that recognizes β-glucans [405, 406] and triggers a protective response, especially against fungi. Dectin-1 is expressed on macrophages, dendritic cells and microglia [407-413] but not on astrocytes or neurons [409]. Stimulation of dectin-1 leads to signaling that leads to phagocytosis and ROS generation but not to cytokine production in microglia [68, 407, 410, 411]. In fact, dectin-1-stimulated microglia display a diminished capacity to produce cytokines in response to both the TLR2 and TLR4 ligands [407]. However, there is a report suggesting that a dectin-1 interaction with tetraspanin CD37 regulates IL-6 expression [408]. As mentioned, dectin-1 can be stimulated by β-glucans [405], which are common constituents of various fungal walls. Despite the fact that β-glucans can also activate CR3 and SR [407], particulate β-glucan (also called curlan) seems to be more specific for dectin-1 [401, 409]. Other specific tools to activate dectin-1 are “depleted” zymosan and heat-killed Saccharomyces cerevisiae [68, 412, 414]. In contrast, laminarin and anti-Dectin-1 antibodies can function as dectin-1 antagonists [411]. There is little evidence that dectin-1 modulates neural network function. It has been shown that systemic administration of lentinan, a branched β-glucan, enhances LTP [414], but it has not yet been determined if such effect is mediated by dectin-1 and microglia.
MICROGLIA OR MICROGLIA-CONDITIONED MEDIUM
To conclude this review, we would like to mention that aside from the pharmacological tools available to activate microglia and test their role in neural network patho-physiology, an alternative experimental approach that has been used for quite a while is the application of microglia themselves or conditioned medium from microglial cultures to the neural tissue, in order to understand the impact of microglia on neural network pathophysiology. This approach has the advantage of using naïve microglia or, perhaps more interesting, of using modified microglia which have been previously manipulated, in isolation, with the pharmacological tools reviewed herein. It avoids most of the possible disadvantages of using a pharmacological tool that might also modulate non-microglial cell types, as has been reviewed in this article. This approximation, which has the caveat of introducing a group of cells to an already established tissue, has rendered very interesting findings. For instance, when labeled naïve microglia are applied on organotypic cultures, they protect the cultures against ischemic conditions [415]. Interestingly, if microglia are previously modulated by pharmacological means (e.g., with anisomycine or minocycline), their protective effect vanishes [415]. This protection is exerted by microglia but not by granulocytes [415]. A similar protective effect is observed when naïve microglia or microglia activated by interleukin-4 are applied to organotypic cultures [416], but when micro-glia are activated with LPS, the damage induced by ischemia in the same preparation is exacerbated [416]. This promising experimental approach has also been used in vivo, where intracerebral injection of microglia can protect against the neurodegeneration induced by occlusion of the middle cerebral artery [417, 418]. In fact, there are reports that microglia can be applied in the periphery; from there, they can migrate into the CNS and produce their protective effects [419]. Interestingly, pre-stimulation of isolated microglia with interferon enhances their neuroprotective effect [419]. In addition to the protective role of exogenous microglia against neurodegeneration, it has been shown that peripheral application of microglia can protect LTP against ischemia-induced deterioration [420]. Furthermore, the application of naïve microglia has also been used to correct pathological conditions involving abnormal microglia. For instance, transplantation of wild-type microglia into irradiated Mecp2-KO hosts (a mouse model of Rett-Syndrome) resulted in the engraftment of microglia onto brain parenchyma and the arrest of disease development [248; however, see 421]. This protective effect is reverted by application of annexin V to block PS-induced activation [248]. As for neural network function, it has been shown that microglia transferred into brain slice cultures produce an increase in NMDA expression [422], an effect that is reproduced by the application of microglia-conditioned medium [422]. Similarly, microglia-conditioned medium increases the frequency of excitatory spontaneous postsynaptic currents [420].
The effects of microglia-conditioned medium on neural network function can also be modulated if microglia are previously modified by the pharmacological tools reviewed herein. For instance, medium conditioned by naïve microglia increases the number of synapses between cortical neurons in vitro [423]; in contrast, the opposite effect is observed when the medium is conditioned by LPS-treated microglia [423]. In fact, conditioned medium collected from LPS-treated microglia can be neurotoxic [424]. In contrast, microglia-conditioned medium promotes astrocyte proliferation and neural-neurite growth [425]. Finally, when conditioned medium from kainate-treated microglia is injected into the brain it induces an enhancement of synaptic transmission [426]. Further research is required to determine which microglial modulators are responsible for the described modulations of neural function.
CONCLUSION
In this article, we have reviewed several pharmacological strategies that are currently in use to understand microglial influence on neural network pathophysiology. None of these pharmacological approaches is completely specific for modulating this cell type, mainly because most reviewed drugs are not completely specific for a receptor and/or because the receptors are not expressed exclusively by microglia (Table 1) [427]. Despite these two major problems, we have reviewed all the alternative approaches that can be used to validate the findings obtained with these drugs in order to give certainty that the reported effects are produced mainly, or at least initially, by microglial modulation. A critical view clearly indicates that further research into microglia cell biology is required to reveal potential targets that can specifically modulate the activity of this heterogeneous cell type. Furthermore, the development of more potent and specific agonists or antagonists of those new putative targets will be very useful not only to understand microglial physiology and its impact on neural network function, but also to offer opportunities for the treatment of diseases that involve microglial dysfunction.
ACKNOWLEDGEMENTS
The authors thank Dr. Dorothy Pless and Jessica González Norris for editorial comments. We thank Benito Ordaz for technical support. This study was supported by Alzheimer’s Association Grant NIRG-11-205443, Fundación Marcos Moshinsky, CONACyT Grants 117, 235789, 246888, and 181323; and by DGAPA-UNAM Grant IN200715.
CONFLICT OF INTEREST
The authors confirm that this article content has no conflict of interest.
REFERENCES
- 1.Lawson L.J., Perry V.H., Dri P., Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39(1):151–170. doi: 10.1016/0306-4522(90)90229-w. [http://dx.doi.org/10.1016/0306-4522(90)90229-W]. [PMID: 2089275]. [DOI] [PubMed] [Google Scholar]
- 2.Tremblay M.È., Stevens B., Sierra A., Wake H., Bessis A., Nimmerjahn A. The role of microglia in the healthy brain. J. Neurosci. 2011;31(45):16064–16069. doi: 10.1523/JNEUROSCI.4158-11.2011. [http://dx.doi.org/10.1523/ JNEUROSCI.4158-11.2011]. [PMID: 22072657]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Kettenmann H., Hanisch U.K., Noda M., Verkhratsky A. Physiology of microglia. Physiol. Rev. 2011;91(2):461–553. doi: 10.1152/physrev.00011.2010. [http://dx.doi.org/10.1152/physrev.00011.2010]. [PMID: 21527731]. [DOI] [PubMed] [Google Scholar]
- 4.Lorea-Hernández J.J., Morales T., Rivera-Angulo A.J., Alcantara-Gonzalez D., Peña-Ortega F. Microglia modulate respiratory rhythm generation and autoresuscitation. Glia. 2016;64(4):603–619. doi: 10.1002/glia.22951. [http://dx.doi.org/10.1002/glia.22951]. [PMID: 26678570]. [DOI] [PubMed] [Google Scholar]
- 5.Bisht K., Sharma K.P., Lecours C., Sánchez M.G., El Hajj H., Milior G., Olmos-Alonso A., Gómez-Nicola D., Luheshi G., Vallières L., Branchi I., Maggi L., Limatola C., Butovsky O., Tremblay M.È. Dark microglia: A new phenotype predominantly associated with pathological states. Glia. 2016;64(5):826–839. doi: 10.1002/glia.22966. [http://dx.doi.org/10.1002/glia.22966]. [PMID: 26847266]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Block M.L., Zecca L., Hong J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007;8(1):57–69. doi: 10.1038/nrn2038. [http://dx.doi.org/10.1038/nrn2038]. [PMID: 17180163]. [DOI] [PubMed] [Google Scholar]
- 7.Wake H., Moorhouse A.J., Jinno S., Kohsaka S., Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 2009;29(13):3974–3980. doi: 10.1523/JNEUROSCI.4363-08.2009. [http://dx.doi.org/10.1523/JNEUROSCI. 4363-08.2009]. [PMID: 19339593]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Li Y., Du X.F., Liu C.S., Wen Z.L., Du J.L. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell. 2012;23(6):1189–1202. doi: 10.1016/j.devcel.2012.10.027. [http://dx.doi.org/10.1016/j.devcel.2012.10.027]. [PMID: 23201120]. [DOI] [PubMed] [Google Scholar]
- 9.Ji K., Akgul G., Wollmuth L.P., Tsirka S.E. Microglia actively regulate the number of functional synapses. PLoS One. 2013;8(2):e56293. doi: 10.1371/journal.pone.0056293. [http://dx.doi.org/10.1371/journal.pone.0056293]. [PMID: 23393609]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Kami K., Taguchi S., Tajima F., Senba E. Histone acetylation in microglia contributes to exercise-induced hypoalgesia in neuropathic pain model mice. J. Pain. 2016;17(5):588–599. doi: 10.1016/j.jpain.2016.01.471. [http://dx.doi.org/10.1016/j.jpain.2016.01.471]. [PMID: 26844418]. [DOI] [PubMed] [Google Scholar]
- 11.Streit W.J., Graeber M.B. Heterogeneity of microglial and perivascular cell populations: insights gained from the facial nucleus paradigm. Glia. 1993;7(1):68–74. doi: 10.1002/glia.440070112. [http://dx.doi.org/10.1002/glia.440070112]. [PMID: 8423064]. [DOI] [PubMed] [Google Scholar]
- 12.Crotti A., Ransohoff R.M. Microglial Physiology and Patho- physiology: Insights from Genome-wide Transcriptional Profiling. Immunity. 2016;44(3):505–515. doi: 10.1016/j.immuni.2016.02.013. [http://dx.doi.org/10.1016/ j.immuni.2016.02.013]. [PMID: 26982357]. [DOI] [PubMed] [Google Scholar]
- 13.Giovanoli S., Notter T., Richetto J., Labouesse M.A., Vuillermot S., Riva M.A., Meyer U. Late prenatal immune activation causes hippocampal deficits in the absence of persistent inflammation across aging. J. Neuroinflammation. 2015;12:221. doi: 10.1186/s12974-015-0437-y. [http://dx.doi.org/10.1186/s12974-015-0437-y]. [PMID: 26602365]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Robillard K.N., Lee K.M., Chiu K.B., MacLean A.G. Glial cell morphological and density changes through the lifespan of rhesus macaques. Brain Behav. Immun. 2016;55:60–69. doi: 10.1016/j.bbi.2016.01.006. [http://dx.doi.org/10.1016/j.bbi.2016.01.006]. [PMID: 26851132]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Nikodemova M., Small A.L., Kimyon R.S., Watters J.J. Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiol. Genomics. 2016;48(5):336–344. doi: 10.1152/physiolgenomics.00129.2015. [http://dx.doi.org/10.1152/ physiolgenomics.00129.2015]. [PMID: 26884461]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Grabert K., Michoel T., Karavolos M.H., Clohisey S., Baillie J.K., Stevens M.P., Freeman T.C., Summers K.M., McColl B.W. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 2016;19(3):504–516. doi: 10.1038/nn.4222. [http://dx.doi.org/10.1038/nn.4222]. [PMID: 26780511]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Tay T.L., Savage J., Hui C.W., Bisht K., Tremblay M.È. Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J. Physiol. 2016 doi: 10.1113/JP272134. [http://dx. doi.org/10.1113/JP272134]. [PMID: 27104646]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Scheffel J., Regen T., Van Rossum D., Seifert S., Ribes S., Nau R., Parsa R., Harris R.A., Boddeke H.W., Chuang H.N., Pukrop T., Wessels J.T., Jürgens T., Merkler D., Brück W., Schnaars M., Simons M., Kettenmann H., Hanisch U.K. Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia. 2012;60(12):1930–1943. doi: 10.1002/glia.22409. [http://dx.doi.org/10.1002/glia.22409]. [PMID: 22911652]. [DOI] [PubMed] [Google Scholar]
- 19.Davalos D., Grutzendler J., Yang G., Kim J.V., Zuo Y., Jung S., Littman D.R., Dustin M.L., Gan W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005;8(6):752–758. doi: 10.1038/nn1472. [http://dx.doi.org/10.1038/nn1472]. [PMID: 15895084]. [DOI] [PubMed] [Google Scholar]
- 20.Nimmerjahn A., Kirchhoff F., Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314–1318. doi: 10.1126/science.1110647. [http://dx.doi.org/10.1126/ science.1110647]. [PMID: 15831717]. [DOI] [PubMed] [Google Scholar]
- 21.Shigemoto-Mogami Y., Hoshikawa K., Goldman J.E., Sekino Y., Sato K. Microglia enhance neurogenesis and oligodendro- genesis in the early postnatal subventricular zone. J. Neurosci. 2014;34(6):2231–2243. doi: 10.1523/JNEUROSCI.1619-13.2014. [http://dx.doi.org/10.1523/JNEUROSCI.1619-13.2014]. [PMID: 24501362]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Bhandare A.M., Kapoor K., Farnham M.M., Pilowsky P.M. Microglia PACAP and glutamate, Friends or foes in seizureinduced autonomic dysfunction and SUDEP? Respir. Physiol.Neurobiol. 2016;S1569-9048(16):30003–30009. doi: 10.1016/j.resp.2016.01.003. [DOI] [PubMed] [Google Scholar]
- 23.Nakagawa Y., Chiba K. Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol. Ther. 2015;154:21–35. doi: 10.1016/j.pharmthera.2015.06.010. [http://dx.doi.org/10.1016/j.pharmthera.2015. 06.010]. [PMID: 26129625]. [DOI] [PubMed] [Google Scholar]
- 24.Cherry J.D., Olschowka J.A., OBanion M.K. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation. 2014;11:98. doi: 10.1186/1742-2094-11-98. [http://dx.doi.org/10.1186/1742-2094-11-98]. [PMID: 24889886]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Klapal L., Igelhorst B.A., Dietzel-Meyer I.D. Changes in Neuronal Excitability by Activated Microglia: Differential Na(+) Current Upregulation in Pyramid-Shaped and Bipolar Neurons by TNF-α and IL-18. Front. Neurol. 2016;7:44. doi: 10.3389/fneur.2016.00044. [http://dx.doi.org/10.3389/fneur.2016.00044]. [PMID: 27065940]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Zheng H., Zhu W., Zhao H., Wang X., Wang W., Li Z. Kainic acid-activated microglia mediate increased excitability of rat hippocampal neurons in vitro and in vivo: crucial role of interleukin-1beta. Neuro.immunomodulation. 2010;17(1):31–38. doi: 10.1159/000243083. [http://dx.doi.org/10.1159/000243083]. [PMID: 19816055]. [DOI] [PubMed] [Google Scholar]
- 27.Hua J.Y., Smear M.C., Baier H., Smith S.J. Regulation of axon growth in vivo by activity-based competition. Nature. 2005;434(7036):1022–1026. doi: 10.1038/nature03409. [http://dx.doi.org/10.1038/nature03409]. [PMID: 15846347]. [DOI] [PubMed] [Google Scholar]
- 28.Peña-Ortega F. Tonic neuromodulation of the inspiratory rhythm generator. Front. Physiol. 2012;3:253. doi: 10.3389/fphys.2012.00253. [http://dx.doi.org/10. 3389/fphys.2012.00253]. [PMID: 22934010]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Fontainhas A.M., Wang M., Liang K.J., Chen S., Mettu P., Damani M., Fariss R.N., Li W., Wong W.T. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One. 2011;6(1):e15973. doi: 10.1371/journal.pone.0015973. [http://dx.doi.org/10.1371/journal.pone. 0015973]. [PMID: 21283568]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Dissing-Olesen L., LeDue J.M., Rungta R.L., Hefendehl J.K., Choi H.B., MacVicar B.A. Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J. Neurosci. 2014;34(32):10511–10527. doi: 10.1523/JNEUROSCI.0405-14.2014. [http://dx. doi.org/10.1523/JNEUROSCI.0405-14.2014]. [PMID: 25100586]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Biber K., Neumann H., Inoue K., Boddeke H.W. Neuronal On and Off signals control microglia. Trends Neurosci. 2007;30(11):596–602. doi: 10.1016/j.tins.2007.08.007. [http://dx.doi.org/10.1016/j.tins.2007.08.007]. [PMID: 17950926]. [DOI] [PubMed] [Google Scholar]
- 32.Hu X., Liou A.K., Leak R.K., Xu M., An C., Suenaga J., Shi Y., Gao Y., Zheng P., Chen J. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog. Neurobiol. 2014;119-120:60–84. doi: 10.1016/j.pneurobio.2014.06.002. [http://dx.doi.org/10.1016/j.pneurobio.2014.06.002]. [PMID: 24923657]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Rodgers K.M., Hutchinson M.R., Northcutt A., Maier S.F., Watkins L.R., Barth D.S. The cortical innate immune response increases local neuronal excitability leading to seizures. Brain. 2009;132(Pt 9):2478–2486. doi: 10.1093/brain/awp177. [http://dx.doi.org/10.1093/brain/ awp177]. [PMID: 19567702]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Linnartz B., Bodea L.G., Neumann H. Microglial carbohydrate-binding receptors for neural repair. Cell Tissue Res. 2012;349(1):215–227. doi: 10.1007/s00441-012-1342-7. [http://dx.doi.org/10.1007/s00441-012-1342-7]. [PMID: 22331363]. [DOI] [PubMed] [Google Scholar]
- 35.Doens D., Fernández P.L. Microglia receptors and their implications in the response to amyloid β for Alzheimers disease pathogenesis. J. Neuroinflammation. 2014;11:48. doi: 10.1186/1742-2094-11-48. [http://dx.doi.org/10.1186/1742-2094-11-48]. [PMID: 24625061]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Wright S.D., Ramos R.A., Tobias P.S., Ulevitch R.J., Mathison J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249(4975):1431–1433. doi: 10.1126/science.1698311. [http://dx.doi.org/10.1126/science.1698311]. [PMID: 1698311]. [DOI] [PubMed] [Google Scholar]
- 37.Pålsson-McDermott E.M., ONeill L.A. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology. 2004;113(2):153–162. doi: 10.1111/j.1365-2567.2004.01976.x. [http://dx.doi.org/10.1111/j.1365-2567.2004. 01976.x]. [PMID: 15379975]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Haworth R., Platt N., Keshav S., Hughes D., Darley E., Suzuki H., Kurihara Y., Kodama T., Gordon S. The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J. Exp. Med. 1997;186(9):1431–1439. doi: 10.1084/jem.186.9.1431. [http://dx.doi.org/10.1084/jem.186.9.1431]. [PMID: 9348300]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Fenton M.J., Golenbock D.T. LPS-binding proteins and receptors. J. Leukoc. Biol. 1998;64(1):25–32. doi: 10.1002/jlb.64.1.25. [PMID: 9665271]. [DOI] [PubMed] [Google Scholar]
- 40.Flaherty S.F., Golenbock D.T., Milham F.H., Ingalls R.R. CD11/CD18 leukocyte integrins: new signaling receptors for bacterial endotoxin. J. Surg. Res. 1997;73(1):85–89. doi: 10.1006/jsre.1997.5195. [http://dx. doi.org/10.1006/jsre.1997.5195]. [PMID: 9441798]. [DOI] [PubMed] [Google Scholar]
- 41.Wright S.D., Jong M.T. Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J. Exp. Med. 1986;164(6):1876–1888. doi: 10.1084/jem.164.6.1876. [http://dx.doi.org/10.1084/jem.164.6.1876]. [PMID: 3537192]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Zhang J., Malik A., Choi H.B., Ko R.W., Dissing-Olesen L., MacVicar B.A. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron. 2014;82(1):195–207. doi: 10.1016/j.neuron.2014.01.043. [http://dx.doi.org/10.1016/ j.neuron.2014.01.043]. [PMID: 24631344]. [DOI] [PubMed] [Google Scholar]
- 43.Ribes S., Ebert S., Czesnik D., Regen T., Zeug A., Bukowski S., Mildner A., Eiffert H., Hanisch U.K., Hammerschmidt S., Nau R. Toll-like receptor prestimulation increases phagocytosis of Escherichia coli DH5alpha and Escherichia coli K1 strains by murine microglial cells. Infect. Immun. 2009;77(1):557–564. doi: 10.1128/IAI.00903-08. [http://dx.doi.org/10.1128/IAI.00903-08]. [PMID: 18981243]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Pascual O., Ben Achour S., Rostaing P., Triller A., Bessis A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. USA. 2012;109(4):E197–E205. doi: 10.1073/pnas.1111098109. [http://dx.doi.org/10.1073/pnas.1111098109]. [PMID: 22167804]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Gullo F., Amadeo A., Donvito G., Lecchi M., Costa B., Constanti A., Wanke E. Atypical seizure-like activity in cortical reverberating networks in vitro can be caused by LPS-induced inflammation: a multi-electrode array study from a hundred neurons. Front. Cell. Neurosci. 2014;8:361. doi: 10.3389/fncel.2014.00361. [http://dx. doi.org/10.3389/fncel.2014.00361]. [PMID: 25404893]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Eun B.L., Abraham J., Mlsna L., Kim M.J., Koh S. Lipopolysaccharide potentiates hyperthermia-induced seizures. Brain Behav. 2015;5(8):e00348. doi: 10.1002/brb3.348. [http://dx.doi.org/10.1002/ brb3.348]. [PMID: 26357586]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Hellstrom I.C., Danik M., Luheshi G.N., Williams S. Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-beta-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons. Hippocampus. 2005;15(5):656–664. doi: 10.1002/hipo.20086. [http://dx.doi.org/10.1002/hipo.20086]. [PMID: 15889405]. [DOI] [PubMed] [Google Scholar]
- 48.Papageorgiou I.E., Lewen A., Galow L.V., Cesetti T., Scheffel J., Regen T., Hanisch U.K., Kann O. TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ. Proc. Natl. Acad. Sci. USA. 2016;113(1):212–217. doi: 10.1073/pnas.1513853113. [http://dx. doi.org/10.1073/pnas.1513853113]. [PMID: 26699475]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Hoshino K., Takeuchi O., Kawai T., Sanjo H., Ogawa T., Takeda Y., Takeda K., Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 1999;162(7):3749–3752. [PMID: 10201887]. [PubMed] [Google Scholar]
- 50.Lehnardt S., Massillon L., Follett P., Jensen F.E., Ratan R., Rosenberg P.A., Volpe J.J., Vartanian T. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl. Acad. Sci. USA. 2003;100(14):8514–8519. doi: 10.1073/pnas.1432609100. [http://dx.doi.org/10.1073/pnas. 1432609100]. [PMID: 12824464]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Lehnardt S., Lachance C., Patrizi S., Lefebvre S., Follett P.L., Jensen F.E., Rosenberg P.A., Volpe J.J., Vartanian T. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J. Neurosci. 2002;22(7):2478–2486. doi: 10.1523/JNEUROSCI.22-07-02478.2002. [PMID: 11923412]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Gao F., Liu Z., Ren W., Jiang W. Acute lipopolysaccharide exposure facilitates epileptiform activity via enhanced excitatory synaptic transmission and neuronal excitability in vitro. Neuropsychiatr. Dis. Treat. 2014;10:1489–1495. doi: 10.2147/NDT.S65695. [http://dx.doi.org/10.2147/NDT.S65695]. [PMID: 25170268]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Chen Z., Jalabi W., Hu W., Park H.J., Gale J.T., Kidd G.J., Bernatowicz R., Gossman Z.C., Chen J.T., Dutta R., Trapp B.D. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat. Commun. 2014;5:4486. doi: 10.1038/ncomms5486. [PMID: 25047355]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Commins S., ONeill L.A., OMara S.M. The effects of the bacterial endotoxin lipopolysaccharide on synaptic transmission and plasticity in the CA1-subiculum pathway in vivo. Neuroscience. 2001;102(2):273–280. doi: 10.1016/s0306-4522(00)00498-x. [http://dx.doi.org/10.1016/S0306-4522(00)00498-X]. [PMID: 11166113]. [DOI] [PubMed] [Google Scholar]
- 55.Vereker E., Campbell V., Roche E., McEntee E., Lynch M.A. Lipopolysaccharide inhibits long term potentiation in the rat dentate gyrus by activating caspase-1. J. Biol. Chem. 2000;275(34):26252–26258. doi: 10.1074/jbc.M002226200. [http://dx.doi.org/10.1074/jbc.M002226200]. [PMID: 10856294]. [DOI] [PubMed] [Google Scholar]
- 56.Kelly A., Vereker E., Nolan Y., Brady M., Barry C., Loscher C.E., Mills K.H., Lynch M.A. Activation of p38 plays a pivotal role in the inhibitory effect of lipopolysaccharide and interleukin-1 beta on long term potentiation in rat dentate gyrus. J. Biol. Chem. 2003;278(21):19453–19462. doi: 10.1074/jbc.M301938200. [http://dx.doi.org/10.1074/jbc. M301938200]. [PMID: 12609991]. [DOI] [PubMed] [Google Scholar]
- 57.Sayyah M., Javad-Pour M., Ghazi-Khansari M. The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors: nitric oxide and prostaglandins. Neuroscience. 2003;122(4):1073–1080. doi: 10.1016/j.neuroscience.2003.08.043. [http://dx. doi.org/10.1016/j.neuroscience.2003.08.043]. [PMID: 14643773]. [DOI] [PubMed] [Google Scholar]
- 58.Heida J.G., Boissé L., Pittman Q.J. Lipopolysaccharide-induced febrile convulsions in the rat: short-term sequelae. Epilepsia. 2004;45(11):1317–1329. doi: 10.1111/j.0013-9580.2004.13704.x. [http://dx.doi.org/10.1111/j.0013-9580.2004. 13704.x]. [PMID: 15509232]. [DOI] [PubMed] [Google Scholar]
- 59.Galic M.A., Riazi K., Heida J.G., Mouihate A., Fournier N.M., Spencer S.J., Kalynchuk L.E., Teskey G.C., Pittman Q.J. Postnatal inflammation increases seizure susceptibility in adult rats. J. Neurosci. 2008;28(27):6904–6913. doi: 10.1523/JNEUROSCI.1901-08.2008. [http://dx.doi.org/10.1523/ JNEUROSCI.1901-08.2008]. [PMID: 18596165]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Huxtable A.G., Vinit S., Windelborn J.A., Crader S.M., Guenther C.H., Watters J.J., Mitchell G.S. Systemic inflammation impairs respiratory chemoreflexes and plasticity. Respir. Physiol. Neurobiol. 2011;178(3):482–489. doi: 10.1016/j.resp.2011.06.017. [http://dx.doi.org/10.1016/j.resp.2011.06.017]. [PMID: 21729770]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Ladino J., Bancalari E., Suguihara C. Ventilatory response to hypoxia during endotoxemia in young rats: role of nitric oxide. Pediatr. Res. 2007;62(2):134–138. doi: 10.1203/PDR.0b013e318098721a. [http://dx.doi.org/10.1203/ PDR.0b013e318098721a]. [PMID: 17597656]. [DOI] [PubMed] [Google Scholar]
- 62.McDeigan G.E., Ladino J., Hehre D., Devia C., Bancalari E., Suguihara C. The effect of Escherichia coli endotoxin infusion on the ventilatory response to hypoxia in unanesthetized newborn piglets. Pediatr. Res. 2003;53(6):950–955. doi: 10.1203/01.PDR.0000064581.94126.1C. [http://dx.doi.org/10. 1203/01.PDR.0000064581.94126.1C]. [PMID: 12646732]. [DOI] [PubMed] [Google Scholar]
- 63.Olsson A., Kayhan G., Lagercrantz H., Herlenius E. IL-1 beta depresses respiration and anoxic survival via a prostaglandin-dependent pathway in neonatal rats. Pediatr. Res. 2003;54(3):326–331. doi: 10.1203/01.PDR.0000076665.62641.A2. [http://dx.doi.org/10.1203/01.PDR.0000076665.62641.A2]. [PMID: 12761362]. [DOI] [PubMed] [Google Scholar]
- 64.Preas H.L., II, Jubran A., Vandivier R.W., Reda D., Godin P.J., Banks S.M., Tobin M.J., Suffredini A.F. Effect of endotoxin on ventilation and breath variability: role of cyclooxygenase pathway. Am. J. Respir. Crit. Care Med. 2001;164(4):620–626. doi: 10.1164/ajrccm.164.4.2003031. [http://dx. doi.org/10.1164/ajrccm.164.4.2003031]. [PMID: 11520726]. [DOI] [PubMed] [Google Scholar]
- 65.Lin M.E., Rivera R.R., Chun J. Targeted deletion of LPA5 identifies novel roles for lysophosphatidic acid signaling in development of neuropathic pain. J. Biol. Chem. 2012;287(21):17608–17617. doi: 10.1074/jbc.M111.330183. [http://dx.doi.org/10.1074/jbc.M111.330183]. [PMID: 22461625]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Song M., Jin J., Lim J.E., Kou J., Pattanayak A., Rehman J.A., Kim H.D., Tahara K., Lalonde R., Fukuchi K. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimers disease. J. Neuroinflammation. 2011;8:92. doi: 10.1186/1742-2094-8-92. [http://dx.doi.org/10. 1186/1742-2094-8-92]. [PMID: 21827663]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.El-Hage N., Podhaizer E.M., Sturgill J., Hauser K.F. Toll-like receptor expression and activation in astroglia: differential regulation by HIV-1 Tat, gp120, and morphine. Immunol. Invest. 2011;40(5):498–522. doi: 10.3109/08820139.2011.561904. [http://dx.doi.org/10.3109/08820139.2011. 561904]. [PMID: 21425908]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Marinelli C., Di Liddo R., Facci L., Bertalot T., Conconi M.T., Zusso M., Skaper S.D., Giusti P. Ligand engagement of Toll-like receptors regulates their expression in cortical microglia and astrocytes. J. Neuroinflammation. 2015;12:244. doi: 10.1186/s12974-015-0458-6. [http://dx.doi.org/10.1186/s12974-015-0458-6]. [PMID: 26714634]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Tang S.C., Lathia J.D., Selvaraj P.K., Jo D.G., Mughal M.R., Cheng A., Siler D.A., Markesbery W.R., Arumugam T.V., Mattson M.P. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp. Neurol. 2008;213(1):114–121. doi: 10.1016/j.expneurol.2008.05.014. [http://dx.doi.org/10.1016/j.expneurol.2008.05.014]. [PMID: 18586243]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Crocker S.J., Frausto R.F., Whitton J.L., Milner R. A novel method to establish microglia-free astrocyte cultures: comparison of matrix metalloproteinase expression profiles in pure cultures of astrocytes and microglia. Glia. 2008;56(11):1187–1198. doi: 10.1002/glia.20689. [http://dx.doi.org/10.1002/glia.20689]. [PMID: 18449943]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Holm T.H., Draeby D., Owens T. Microglia are required for astroglial Toll-like receptor 4 response and for optimal TLR2 and TLR3 response. Glia. 2012;60(4):630–638. doi: 10.1002/glia.22296. [http://dx.doi.org/10.1002/glia.22296]. [PMID: 22271465]. [DOI] [PubMed] [Google Scholar]
- 72.Barbierato M., Facci L., Argentini C., Marinelli C., Skaper S.D., Giusti P. Astrocyte-microglia cooperation in the expression of a pro-inflammatory phenotype. CNS Neurol. Disord. Drug Targets. 2013;12(5):608–618. doi: 10.2174/18715273113129990064. [http://dx.doi.org/10.2174/18715273113129990064]. [PMID: 23574172]. [DOI] [PubMed] [Google Scholar]
- 73.Facci L., Barbierato M., Marinelli C., Argentini C., Skaper S.D., Giusti P. Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1β release. Sci. Rep. 2014;4:6824. doi: 10.1038/srep06824. [http://dx.doi.org/10.1038/srep06824]. [PMID: 25351234]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Hui C.W., Zhang Y., Herrup K. Non-Neuronal Cells Are Required to Mediate the Effects of Neuroinflammation: Results from a Neuron-Enriched Culture System. PLoS One. 2016;11(1):e0147134. doi: 10.1371/journal.pone.0147134. [http://dx.doi.org/10.1371/journal.pone.0147134]. [PMID: 26788729]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Bressan E., Peres K.C., Tonussi C.R. Evidence that LPS-reactive arthritis in rats depends on the glial activity and the fractalkine-TNF-α signaling in the spinal cord. Neuropharmacology. 2012;62(2):947–958. doi: 10.1016/j.neuropharm.2011.09.028. [http://dx.doi.org/10.1016/j.neuropharm.2011.09. 028]. [PMID: 22001426]. [DOI] [PubMed] [Google Scholar]
- 76.Gnjatic S., Sawhney N.B., Bhardwaj N. Toll-like receptor agonists: are they good adjuvants? Cancer J. 2010;16(4):382–391. doi: 10.1097/PPO.0b013e3181eaca65. [http://dx.doi.org/10.1097/PPO.0b013e3181eaca65]. [PMID: 20693851]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Costello D.A., Watson M.B., Cowley T.R., Murphy N., Murphy Royal C., Garlanda C., Lynch M.A. Interleukin-1alpha and HMGB1 mediate hippocampal dysfunction in SIGIRR-deficient mice. J. Neurosci. 2011;31(10):3871–3879. doi: 10.1523/JNEUROSCI.6676-10.2011. [http://dx.doi.org/10.1523/JNEUROSCI.6676-10.2011]. [PMID: 21389242]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Maggio N., Shavit-Stein E., Dori A., Blatt I., Chapman J. Prolonged systemic inflammation persistently modifies synaptic plasticity in the hippocampus: modulation by the stress hormones. Front. Mol. Neurosci. 2013;6:46. doi: 10.3389/fnmol.2013.00046. [http://dx.doi.org/10.3389/ fnmol.2013.00046]. [PMID: 24363642]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Mokrushin A.A., Pavlinova L.I. Hsp70 promotes synaptic transmission in brain slices damaged by contact with blood clot. Eur. J. Pharmacol. 2012;677(1-3):55–62. doi: 10.1016/j.ejphar.2011.12.004. [http://dx.doi.org/10.1016/j.ejphar.2011.12.004]. [PMID: 22200630]. [DOI] [PubMed] [Google Scholar]
- 80.Bobkova N.V., Garbuz D.G., Nesterova I., Medvinskaya N., Samokhin A., Alexandrova I., Yashin V., Karpov V., Kukharsky M.S., Ninkina N.N., Smirnov A.A., Nudler E., Evgenev M. Therapeutic effect of exogenous hsp70 in mouse models of Alzheimers disease. J. Alzheimers Dis. 2014;38(2):425–435. doi: 10.3233/JAD-130779. [PMID: 23985416]. [DOI] [PubMed] [Google Scholar]
- 81.Kwon M.S., Woo S.K., Kurland D.B., Yoon S.H., Palmer A.F., Banerjee U., Iqbal S., Ivanova S., Gerzanich V., Simard J.M. Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int. J. Mol. Sci. 2015;16(3):5028–5046. doi: 10.3390/ijms16035028. [http://dx.doi.org/10.3390/ijms16035028]. [PMID: 25751721]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Kochlamazashvili G., Henneberger C., Bukalo O., Dvoretskova E., Senkov O., Lievens P.M., Westenbroek R., Engel A.K., Catterall W.A., Rusakov D.A., Schachner M., Dityatev A. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels. Neuron. 2010;67(1):116–128. doi: 10.1016/j.neuron.2010.05.030. [http://dx.doi.org/10.1016/j.neuron.2010.05.030]. [PMID: 20624596]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Michaud J.P., Hallé M., Lampron A., Thériault P., Préfontaine P., Filali M., Tribout-Jover P., Lanteigne A.M., Jodoin R., Cluff C., Brichard V., Palmantier R., Pilorget A., Larocque D., Rivest S. Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimers disease-related pathology. Proc. Natl. Acad. Sci. USA. 2013;110(5):1941–1946. doi: 10.1073/pnas.1215165110. [http://dx.doi.org/10.1073/pnas.1215165110]. [PMID: 23322736]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Yao L., Kan E.M., Lu J., Hao A., Dheen S.T., Kaur C., Ling E.A. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J. Neuroinflammation. 2013;10:23. doi: 10.1186/1742-2094-10-23. [http://dx.doi.org/10.1186/1742-2094-10-23]. [PMID: 23388509]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Fernandez-Lizarbe S., Pascual M., Guerri C. Critical role of TLR4 response in the activation of microglia induced by ethanol. J. Immunol. 2009;183(7):4733–4744. doi: 10.4049/jimmunol.0803590. [http://dx.doi.org/10.4049/ jimmunol.0803590]. [PMID: 19752239]. [DOI] [PubMed] [Google Scholar]
- 86.Fearon D.T., Wong W.W. Complement ligand-receptor interactions that mediate biological responses. Annu. Rev. Immunol. 1983;1:243–271. doi: 10.1146/annurev.iy.01.040183.001331. [http://dx.doi.org/10.1146/annurev.iy.01.040183. 001331]. [PMID: 6242465]. [DOI] [PubMed] [Google Scholar]
- 87.Watanabe T., Yamamoto T., Abe Y., Saito N., Kumagai T., Kayama H. Differential activation of microglia after experimental spinal cord injury. J. Neurotrauma. 1999;16(3):255–265. doi: 10.1089/neu.1999.16.255. [http://dx.doi.org/10.1089/neu.1999.16.255]. [PMID: 10195473]. [DOI] [PubMed] [Google Scholar]
- 88.Husemann J., Loike J.D., Anankov R., Febbraio M., Silverstein S.C. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia. 2002;40(2):195–205. doi: 10.1002/glia.10148. [http://dx.doi.org/10.1002/glia.10148]. [PMID: 12379907]. [DOI] [PubMed] [Google Scholar]
- 89.Chang M.L., Wu C.H., Chien H.F., Jiang-Shieh Y.F., Shieh J.Y., Wen C.Y. Microglia/macrophages responses to kainate-induced injury in the rat retina. Neurosci. Res. 2006;54(3):202–212. doi: 10.1016/j.neures.2005.11.010. [http://dx.doi.org/10.1016/j.neures.2005.11.010]. [PMID: 16458383]. [DOI] [PubMed] [Google Scholar]
- 90.Cornejo F., von Bernhardi R. Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimers disease. Mediators Inflamm. 2013 doi: 10.1155/2013/895651. [http://dx.doi.org/10.1155/2013/895651] [PMID: 23737655] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Fu H., Liu B., Frost J.L., Hong S., Jin M., Ostaszewski B., Shankar G.M., Costantino I.M., Carroll M.C., Mayadas T.N., Lemere C.A. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia. 2012;60(6):993–1003. doi: 10.1002/glia.22331. [http://dx. doi.org/10.1002/glia.22331]. [PMID: 22438044]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Levesque S., Taetzsch T., Lull M.E., Johnson J.A., McGraw C., Block M.L. The role of MAC1 in diesel exhaust particle-induced microglial activation and loss of dopaminergic neuron function. J. Neurochem. 2013;125(5):756–765. doi: 10.1111/jnc.12231. [http://dx.doi.org/10.1111/jnc. 12231]. [PMID: 23470120]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Godoy B., Murgas P., Tichauer J., Von Bernhardi R. Scavenger receptor class A ligands induce secretion of IL1β and exert a modulatory effect on the inflammatory activation of astrocytes in culture. J. Neuroimmunol. 2012;251(1-2):6–13. doi: 10.1016/j.jneuroim.2012.06.004. [http://dx.doi.org/10.1016/j.jneuroim.2012.06.004]. [PMID: 22743055]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Davoust N., Jones J., Stahel P.F., Ames R.S., Barnum S.R. Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia. 1999;26(3):201–211. doi: 10.1002/(sici)1098-1136(199905)26:3<201::aid-glia2>3.0.co;2-m. [http://dx.doi.org/10.1002/ (SICI)1098-1136(199905)26:3<201:AID-GLIA2>3.0.CO;2-M]. [PMID: 10340761]. [DOI] [PubMed] [Google Scholar]
- 95.Stephan A.H., Barres B.A., Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 2012;35:369–389. doi: 10.1146/annurev-neuro-061010-113810. [http://dx.doi.org/10.1146/annurev-neuro-061010-113810]. [PMID: 22715882]. [DOI] [PubMed] [Google Scholar]
- 96.Shi Q., Colodner K.J., Matousek S.B., Merry K., Hong S., Kenison J.E., Frost J.L., Le K.X., Li S., Dodart J.C., Caldarone B.J., Stevens B., Lemere C.A. Complement C3-Deficient Mice Fail to Display Age-Related Hippocampal Decline. J. Neurosci. 2015;35(38):13029–13042. doi: 10.1523/JNEUROSCI.1698-15.2015. [http://dx.doi.org/10.1523/ JNEUROSCI.1698-15.2015]. [PMID: 26400934]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Stevens B., Allen N.J., Vazquez L.E., Howell G.R., Christopherson K.S., Nouri N., Micheva K.D., Mehalow A.K., Huberman A.D., Stafford B., Sher A., Litke A.M., Lambris J.D., Smith S.J., John S.W., Barres B.A. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–1178. doi: 10.1016/j.cell.2007.10.036. [http://dx.doi.org/10.1016/j.cell.2007.10. 036]. [PMID: 18083105]. [DOI] [PubMed] [Google Scholar]
- 98.Leslie. Complement Receptors. Encyclopedia of Life Sciences. Nature Publishing Group; 2001. [Google Scholar]
- 99.Cahoy J.D., Emery B., Kaushal A., Foo L.C., Zamanian J.L., Christopherson K.S., Xing Y., Lubischer J.L., Krieg P.A., Krupenko S.A., Thompson W.J., Barres B.A. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 2008;28(1):264–278. doi: 10.1523/JNEUROSCI.4178-07.2008. [http://dx.doi.org/10.1523/ JNEUROSCI.4178-07.2008]. [PMID: 18171944]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Lévi-Strauss M., Mallat M. Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. J. Immunol. 1987;139(7):2361–2366. [PMID: 3655365]. [PubMed] [Google Scholar]
- 101.Woodruff T.M., Ager R.R., Tenner A.J., Noakes P.G., Taylor S.M. The role of the complement system and the activation fragment C5a in the central nervous system. Neuromol. Med. 2010;12(2):179–192. doi: 10.1007/s12017-009-8085-y. [http://dx.doi.org/10.1007/s12017-009-8085-y]. [PMID: 19763906]. [DOI] [PubMed] [Google Scholar]
- 102.Veerhuis R., Nielsen H.M., Tenner A.J. Complement in the brain. Mol. Immunol. 2011;48(14):1592–1603. doi: 10.1016/j.molimm.2011.04.003. [http://dx.doi.org/10. 1016/j.molimm.2011.04.003]. [PMID: 21546088]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Lian H., Litvinchuk A., Chiang A.C., Aithmitti N., Jankowsky J.L., Zheng H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimers Disease. J. Neurosci. 2016;36(2):577–589. doi: 10.1523/JNEUROSCI.2117-15.2016. [http://dx.doi.org/10.1523/JNEUROSCI.2117-15.2016]. [PMID: 26758846]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Ischenko A., Sayah S., Patte C., Andreev S., Gasque P., Schouft M.T., Vaudry H., Fontaine M. Expression of a functional anaphylatoxin C3a receptor by astrocytes. J. Neurochem. 1998;71(6):2487–2496. doi: 10.1046/j.1471-4159.1998.71062487.x. [http://dx.doi.org/10.1046/j.1471-4159.1998. 71062487.x]. [PMID: 9832147]. [DOI] [PubMed] [Google Scholar]
- 105.Bénard M., Gonzalez B.J., Schouft M.T., Falluel-Morel A., Vaudry D., Chan P., Vaudry H., Fontaine M. Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation. Neuroprotective effect of C5a against apoptotic cell death. J. Biol. Chem. 2004;279(42):43487–43496. doi: 10.1074/jbc.M404124200. [http://dx.doi.org/10.1074/jbc.M404124200]. [PMID: 15292245]. [DOI] [PubMed] [Google Scholar]
- 106.Lian H., Yang L., Cole A., Sun L., Chiang A.C., Fowler S.W., Shim D.J., Rodriguez-Rivera J., Taglialatela G., Jankowsky J.L., Lu H.C., Zheng H.N. κB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimers disease. Neuron. 2015;85(1):101–115. doi: 10.1016/j.neuron.2014.11.018. [http://dx.doi.org/10.1016/j.neuron.2014.11.018]. [PMID: 25533482]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Gao H.M., Zhou H., Zhang F., Wilson B.C., Kam W., Hong J.S. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J. Neurosci. 2011;31(3):1081–1092. doi: 10.1523/JNEUROSCI.3732-10.2011. [http://dx.doi.org/10.1523/ JNEUROSCI.3732-10.2011]. [PMID: 21248133]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Russell D.G., Wright S.D. Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. J. Exp. Med. 1988;168(1):279–292. doi: 10.1084/jem.168.1.279. [http://dx.doi.org/10.1084/jem.168.1.279]. [PMID: 3294332]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Shinjyo N., Ståhlberg A., Dragunow M., Pekny M., Pekna M. Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells. 2009;27(11):2824–2832. doi: 10.1002/stem.225. [http://dx.doi.org/10.1002/stem.225]. [PMID: 19785034]. [DOI] [PubMed] [Google Scholar]
- 110.Chung W.S., Welsh C.A., Barres B.A., Stevens B. Do glia drive synaptic and cognitive impairment in disease? Nat. Neurosci. 2015;18(11):1539–1545. doi: 10.1038/nn.4142. [http://dx.doi.org/10.1038/nn.4142]. [PMID: 26505565]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Lian H., Yang L., Cole A., Sun L., Chiang A.C., Fowler S.W., Shim D.J., Rodriguez-Rivera J., Taglialatela G., Jankowsky J.L., Lu H.C., Zheng H.N. κB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimers disease. Neuron. 2015;85(1):101–115. doi: 10.1016/j.neuron.2014.11.018. [http://dx.doi.org/10.1016/j.neuron.2014.11.018]. [PMID: 25533482]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Perez-Alcazar M., Daborg J., Stokowska A., Wasling P., Björefeldt A., Kalm M., Zetterberg H., Carlström K.E., Blomgren K., Ekdahl C.T., Hanse E., Pekna M. Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3. Exp. Neurol. 2014;253:154–164. doi: 10.1016/j.expneurol.2013.12.013. [http://dx.doi.org/10. 1016/j.expneurol.2013.12.013]. [PMID: 24378428]. [DOI] [PubMed] [Google Scholar]
- 113.Celik E., Faridi M.H., Kumar V., Deep S., Moy V.T., Gupta V. Agonist leukadherin-1 increases CD11b/CD18-dependent adhesion via membrane tethers. Biophys. J. 2013;105(11):2517–2527. doi: 10.1016/j.bpj.2013.10.020. [http://dx.doi.org/10.1016/j.bpj.2013.10.020]. [PMID: 24314082]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Schäfer M.K., Schwaeble W.J., Post C., Salvati P., Calabresi M., Sim R.B., Petry F., Loos M., Weihe E. Complement C1q is dramatically up-regulated in brain microglia in response to transient global cerebral ischemia. J. Immunol. 2000;164(10):5446–5452. doi: 10.4049/jimmunol.164.10.5446. [http://dx.doi.org/10.4049/jimmunol.164.10.5446]. [PMID: 10799911]. [DOI] [PubMed] [Google Scholar]
- 115.Chu Y., Jin X., Parada I., Pesic A., Stevens B., Barres B., Prince D.A. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc. Natl. Acad. Sci. USA. 2010;107(17):7975–7980. doi: 10.1073/pnas.0913449107. [http://dx.doi.org/10.1073/pnas.0913449107]. [PMID: 20375278]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Gong B., Pan Y., Zhao W., Knable L., Vempati P., Begum S., Ho L., Wang J., Yemul S., Barnum S., Bilski A., Gong B.Y., Pasinetti G.M. IVIG immunotherapy protects against synaptic dysfunction in Alzheimers disease through complement anaphylatoxin C5a-mediated AMPA-CREB-C/EBP signaling pathway. Mol. Immunol. 2013;56(4):619–629. doi: 10.1016/j.molimm.2013.06.016. [http://dx.doi.org/10.1016/ j.molimm.2013.06.016]. [PMID: 23911420]. [DOI] [PubMed] [Google Scholar]
- 117.Gasque P., Singhrao S.K., Neal J.W., Götze O., Morgan B.P. Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am. J. Pathol. 1997;150(1):31–41. [PMID: 9006319]. [PMC free article] [PubMed] [Google Scholar]
- 118.Crane J.W., Baiquni G.P., Sullivan R.K., Lee J.D., Sah P., Taylor S.M., Noakes P.G., Woodruff T.M. The C5a anaphylatoxin receptor CD88 is expressed in presynaptic terminals of hippocampal mossy fibres. J. Neuroinflammation. 2009;6:34. doi: 10.1186/1742-2094-6-34. [http://dx.doi.org/10.1186/1742-2094-6-34]. [PMID: 19917081]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Fernando L.P., Natesan S., Joseph K., Kaplan A.P. High molecular weight kininogen and factor XII binding to endothelial cells and astrocytes. Thromb. Haemost. 2003;90(5):787–795. doi: 10.1160/TH03-04-0231. [PMID: 14597972]. [DOI] [PubMed] [Google Scholar]
- 120.Bjartmar L., Huberman A.D., Ullian E.M., Rentería R.C., Liu X., Xu W., Prezioso J., Susman M.W., Stellwagen D., Stokes C.C., Cho R., Worley P., Malenka R.C., Ball S., Peachey N.S., Copenhagen D., Chapman B., Nakamoto M., Barres B.A., Perin M.S. Neuronal pentraxins mediate synaptic refinement in the developing visual system. J. Neurosci. 2006;26(23):6269–6281. doi: 10.1523/JNEUROSCI.4212-05.2006. [http://dx.doi.org/10.1523/JNEUROSCI.4212-05.2006]. [PMID: 16763034]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Harrison J.K., Jiang Y., Chen S., Xia Y., Maciejewski D., McNamara R.K., Streit W.J., Salafranca M.N., Adhikari S., Thompson D.A., Botti P., Bacon K.B., Feng L. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. USA. 1998;95(18):10896–10901. doi: 10.1073/pnas.95.18.10896. [http://dx.doi.org/10.1073/pnas. 95.18.10896]. [PMID: 9724801]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Hughes P.M., Botham M.S., Frentzel S., Mir A., Perry V.H. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia. 2002;37(4):314–327. [http://dx.doi.org/10.1002/glia.10037]. [PMID: 11870871]. [PubMed] [Google Scholar]
- 123.Nishiyori A., Minami M., Ohtani Y., Takami S., Yamamoto J., Kawaguchi N., Kume T., Akaike A., Satoh M. Localization of fractalkine and CX3CR1 mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? FEBS Lett. 1998;429(2):167–172. doi: 10.1016/s0014-5793(98)00583-3. [http://dx.doi.org/10.1016/S0014-5793(98)00583-3]. [PMID: 9650583]. [DOI] [PubMed] [Google Scholar]
- 124.Meucci O., Fatatis A., Simen A.A., Bushell T.J., Gray P.W., Miller R.J. Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc. Natl. Acad. Sci. USA. 1998;95(24):14500–14505. doi: 10.1073/pnas.95.24.14500. [http://dx.doi.org/10.1073/pnas.95. 24.14500]. [PMID: 9826729]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Lindia J.A., McGowan E., Jochnowitz N., Abbadie C. Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J. Pain. 2005;6(7):434–438. doi: 10.1016/j.jpain.2005.02.001. [http://dx.doi.org/10.1016/j.jpain.2005.02.001]. [PMID: 15993821]. [DOI] [PubMed] [Google Scholar]
- 126.Sunnemark D., Eltayeb S., Nilsson M., Wallström E., Lassmann H., Olsson T., Berg A.L., Ericsson-Dahlstrand A. CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J. Neuroinflammation. 2005;2:17. doi: 10.1186/1742-2094-2-17. [http://dx.doi.org/10.1186/1742-2094-2-17]. [PMID: 16053521]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Depboylu C., Eiden L.E., Schäfer M.K., Reinhart T.A., Mitsuya H., Schall T.J., Weihe E. Fractalkine expression in the rhesus monkey brain during lentivirus infection and its control by 6-chloro-2,3-dideoxyguanosine. J. Neuropathol. Exp. Neurol. 2006;65(12):1170–1180. doi: 10.1097/01.jnen.0000248550.22585.5e. [http://dx.doi.org/10.1097/01.jnen.0000248550. 22585.5e]. [PMID: 17146291]. [DOI] [PubMed] [Google Scholar]
- 128.Heinisch S., Kirby L.G. Fractalkine/CX3CL1 enhances GABA synaptic activity at serotonin neurons in the rat dorsal raphe nucleus. Neuroscience. 2009;164(3):1210–1223. doi: 10.1016/j.neuroscience.2009.08.075. [http://dx.doi.org/10.1016/j.neuroscience.2009.08.075]. [PMID: 19748551]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Sheridan G.K., Wdowicz A., Pickering M., Watters O., Halley P., OSullivan N.C., Mooney C., OConnell D.J., OConnor J.J., Murphy K.J. CX3CL1 is up-regulated in the rat hippocampus during memory-associated synaptic plasticity. Front. Cell. Neurosci. 2014;8:233. doi: 10.3389/fncel.2014.00233. [http://dx.doi.org/10.3389/fncel.2014.00233]. [PMID: 25161610]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Maciejewski-Lenoir D., Chen S., Feng L., Maki R., Bacon K.B. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J. Immunol. 1999;163(3):1628–1635. [PMID: 10415068]. [PubMed] [Google Scholar]
- 131.Xu M.X., Yu R., Shao L.F., Zhang Y.X., Ge C.X., Liu X.M., Wu W.Y., Li J.M., Kong LD. Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation, Suppression by curcumin. Brain Behav.Immun. 2016;S0889-1591(16) doi: 10.1016/j.bbi.2016.01.001. 30001-0. [DOI] [PubMed] [Google Scholar]
- 132.Deiva K., Geeraerts T., Salim H., Leclerc P., Héry C., Hugel B., Freyssinet J.M., Tardieu M. Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur. J. Neurosci. 2004;20(12):3222–3232. doi: 10.1111/j.1460-9568.2004.03800.x. [http://dx.doi.org/10.1111/ j.1460-9568.2004.03800.x]. [PMID: 15610155]. [DOI] [PubMed] [Google Scholar]
- 133.Dworzak J., Renvoisé B., Habchi J., Yates E.V., Combadière C., Knowles T.P., Dobson C.M., Blackstone C., Paulsen O., Murphy P.M. Neuronal Cx3cr1 Deficiency Protects against Amyloid β-Induced Neurotoxicity. PLoS One. 2015;10(6):e0127730. doi: 10.1371/journal.pone.0127730. [http://dx.doi.org/10.1371/journal.pone.0127730]. [PMID: 26038823]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Ali I., Chugh D., Ekdahl C.T. Role of fractalkine-CX3CR1 pathway in seizure-induced microglial activation, neuro- degeneration, and neuroblast production in the adult rat brain. Neurobiol. Dis. 2015;74:194–203. doi: 10.1016/j.nbd.2014.11.009. [http://dx.doi.org/10.1016/ j.nbd.2014.11.009]. [PMID: 25461978]. [DOI] [PubMed] [Google Scholar]
- 135.Jung S., Aliberti J., Graemmel P., Sunshine M.J., Kreutzberg G.W., Sher A., Littman D.R. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 2000;20(11):4106–4114. doi: 10.1128/mcb.20.11.4106-4114.2000. [http://dx.doi.org/10.1128/MCB.20.11.4106-4114.2000]. [PMID: 10805752]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Bertollini C., Ragozzino D., Gross C., Limatola C., Eusebi F. Fractalkine/CX3CL1 depresses central synaptic transmission in mouse hippocampal slices. Neuropharmacology. 2006;51(4):816–821. doi: 10.1016/j.neuropharm.2006.05.027. [http://dx.doi.org/10.1016/j.neuropharm.2006.05.027]. [PMID: 16815480]. [DOI] [PubMed] [Google Scholar]
- 137.Ragozzino D., Di Angelantonio S., Trettel F., Bertollini C., Maggi L., Gross C., Charo I.F., Limatola C., Eusebi F. Chemokine fractalkine/CX3CL1 negatively modulates active glutamatergic synapses in rat hippocampal neurons. J. Neurosci. 2006;26(41):10488–10498. doi: 10.1523/JNEUROSCI.3192-06.2006. [http://dx.doi.org/10.1523/JNEUROSCI. 3192-06.2006]. [PMID: 17035533]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Piccinin S., Di Angelantonio S., Piccioni A., Volpini R., Cristalli G., Fredholm B.B., Limatola C., Eusebi F., Ragozzino D. CX3CL1-induced modulation at CA1 synapses reveals multiple mechanisms of EPSC modulation involving adenosine receptor subtypes. J. Neuroimmunol. 2010;224(1-2):85–92. doi: 10.1016/j.jneuroim.2010.05.012. [http://dx.doi.org/10.1016/j.jneuroim.2010.05.012]. [PMID: 20570369]. [DOI] [PubMed] [Google Scholar]
- 139.Lauro C., Catalano M., Di Paolo E., Chece G., de Costanzo I., Trettel F., Limatola C. Fractalkine/CX3CL1 engages different neuroprotective responses upon selective glutamate receptor overactivation. Front. Cell. Neurosci. 2015;8:472. doi: 10.3389/fncel.2014.00472. [http://dx.doi.org/10.3389/fncel.2014.00472]. [PMID: 25653593]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Roseti C., Fucile S., Lauro C., Martinello K., Bertollini C., Esposito V., Mascia A., Catalano M., Aronica E., Limatola C., Palma E. Fractalkine/CX3CL1 modulates GABAA currents in human temporal lobe epilepsy. Epilepsia. 2013;54(10):1834–1844. doi: 10.1111/epi.12354. [http://dx.doi.org/10.1111/epi.12354]. [PMID: 24032743]. [DOI] [PubMed] [Google Scholar]
- 141.Maggi L., Trettel F., Scianni M., Bertollini C., Eusebi F., Fredholm B.B., Limatola C. LTP impairment by fractalkine/ CX3CL1 in mouse hippocampus is mediated through the activity of adenosine receptor type 3 (A3R). J. Neuroimmunol. 2009;215(1-2):36–42. doi: 10.1016/j.jneuroim.2009.07.016. [http://dx.doi.org/10.1016/j.jneuroim.2009.07.016]. [PMID: 19709758]. [DOI] [PubMed] [Google Scholar]
- 142.Rogers J.T., Morganti J.M., Bachstetter A.D., Hudson C.E., Peters M.M., Grimmig B.A., Weeber E.J., Bickford P.C., Gemma C. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J. Neurosci. 2011;31(45):16241–16250. doi: 10.1523/JNEUROSCI.3667-11.2011. [http://dx.doi.org/10.1523/ JNEUROSCI.3667-11.2011]. [PMID: 22072675]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Zhan Y. Theta frequency prefrontal-hippocampal driving relationship during free exploration in mice. Neuroscience. 2015;300:554–565. doi: 10.1016/j.neuroscience.2015.05.063. [http://dx.doi.org/10.1016/j.neuroscience.2015.05.063]. [PMID: 26037805]. [DOI] [PubMed] [Google Scholar]
- 144.White G.E., Tan T.C., John A.E., Whatling C., McPheat W.L., Greaves D.R. Fractalkine has anti-apoptotic and proliferative effects on human vascular smooth muscle cells via epidermal growth factor receptor signalling. Cardiovasc. Res. 2010;85(4):825–835. doi: 10.1093/cvr/cvp341. [http://dx.doi.org/10.1093/cvr/cvp341]. [PMID: 19840952]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Horiuchi M., Smith L., Maezawa I., Jin L.W. CX3CR1 ablation ameliorates motor and respiratory dysfunctions and improves survival of a Rett syndrome mouse model. Brain Behav. Immun. 2016;S0889-1591(16):30035–6. doi: 10.1016/j.bbi.2016.02.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Honda S., Sasaki Y., Ohsawa K., Imai Y., Nakamura Y., Inoue K., Kohsaka S. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J. Neurosci. 2001;21(6):1975–1982. doi: 10.1523/JNEUROSCI.21-06-01975.2001. [PMID: 11245682]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat. Rev. Drug Discov. 2008;7(7):575–590. doi: 10.1038/nrd2605. [http://dx.doi.org/10.1038/nrd2605]. [PMID: 18591979]. [DOI] [PubMed] [Google Scholar]
- 148.James G., Butt A.M. P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur. J. Pharmacol. 2002;447(2-3):247–260. doi: 10.1016/s0014-2999(02)01756-9. [http://dx.doi.org/10.1016/ S0014-2999(02)01756-9]. [PMID: 12151016]. [DOI] [PubMed] [Google Scholar]
- 149.Inoue K. ATP receptors of microglia involved in pain. Novartis Found. Symp. 2006;276:263–272. [http://dx.doi.org/10.1002/ 9780470032244.ch21]. [PMID: 16805436]. [PubMed] [Google Scholar]
- 150.Inoue K., Koizumi S., Kataoka A., Tozaki-Saitoh H., Tsuda M. P2Y(6)-Evoked Microglial Phagocytosis. Int. Rev. Neurobiol. 2009;85:159–163. doi: 10.1016/S0074-7742(09)85012-5. [http://dx.doi.org/10.1016/S0074-7742(09) 85012-5]. [PMID: 19607968]. [DOI] [PubMed] [Google Scholar]
- 151.Emmrich J.V., Hornik T.C., Neher J.J., Brown G.C. Rotenone induces neuronal death by microglial phagocytosis of neurons. FEBS J. 2013;280(20):5030–5038. doi: 10.1111/febs.12401. [http://dx.doi.org/10.1111/ febs.12401]. [PMID: 23789887]. [DOI] [PubMed] [Google Scholar]
- 152.Franke H., Krügel U., Grosche J., Heine C., Härtig W., Allgaier C., Illes P. P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience. 2004;127(2):431–441. doi: 10.1016/j.neuroscience.2004.05.003. [http://dx.doi.org/10.1016/j.neuroscience.2004.05.003]. [PMID: 15262333]. [DOI] [PubMed] [Google Scholar]
- 153.Quintas C., Pinho D., Pereira C., Saraiva L., Gonçalves J., Queiroz G. Microglia P2Y6 receptors mediate nitric oxide release and astrocyte apoptosis. J. Neuroinflammation. 2014;11:141. doi: 10.1186/s12974-014-0141-3. [http://dx.doi.org/10.1186/s12974-014-0141-3]. [PMID: 25178395]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Kim B., Jeong H.K., Kim J.H., Lee S.Y., Jou I., Joe E.H. Uridine 5-diphosphate induces chemokine expression in microglia and astrocytes through activation of the P2Y6 receptor. J. Immunol. 2011;186(6):3701–3709. doi: 10.4049/jimmunol.1000212. [http://dx.doi.org/10.4049/ jimmunol.1000212]. [PMID: 21317391]. [DOI] [PubMed] [Google Scholar]
- 155.Pinho D., Quintas C., Sardo F., Cardoso T.M., Queiroz G. Purinergic modulation of norepinephrine release and uptake in rat brain cortex: contribution of glial cells. J. Neurophysiol. 2013;110(11):2580–2591. doi: 10.1152/jn.00708.2012. [http://dx.doi.org/10.1152/jn.00708.2012]. [PMID: 24027106]. [DOI] [PubMed] [Google Scholar]
- 156.Hervás C., Pérez-Sen R., Miras-Portugal M.T. Coexpression of functional P2X and P2Y nucleotide receptors in single cerebellar granule cells. J. Neurosci. Res. 2003;73(3):384–399. doi: 10.1002/jnr.10676. [http://dx. doi.org/10.1002/jnr.10676]. [PMID: 12868072]. [DOI] [PubMed] [Google Scholar]
- 157.Kobayashi K., Fukuoka T., Yamanaka H., Dai Y., Obata K., Tokunaga A., Noguchi K. Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J. Comp. Neurol. 2006;498(4):443–454. doi: 10.1002/cne.21066. [http://dx. doi.org/10.1002/cne.21066]. [PMID: 16874807]. [DOI] [PubMed] [Google Scholar]
- 158.Koizumi S., Shigemoto-Mogami Y., Nasu-Tada K., Shinozaki Y., Ohsawa K., Tsuda M., Joshi B.V., Jacobson K.A., Kohsaka S., Inoue K. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature. 2007;446(7139):1091–1095. doi: 10.1038/nature05704. [http://dx.doi.org/10.1038/nature05704]. [PMID: 17410128]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Okada M., Nakagawa T., Minami M., Satoh M. Analgesic effects of intrathecal administration of P2Y nucleotide receptor agonists UTP and UDP in normal and neuropathic pain model rats. J. Pharmacol. Exp. Ther. 2002;303(1):66–73. doi: 10.1124/jpet.102.036079. [http://dx.doi.org/10.1124/jpet.102.036079]. [PMID: 12235234]. [DOI] [PubMed] [Google Scholar]
- 160.Barragán-Iglesias P., Pineda-Farias J.B., Cervantes-Durán C., Bravo-Hernández M., Rocha-González H.I., Murbartián J., Granados-Soto V. Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol. Pain. 2014;10:29. doi: 10.1186/1744-8069-10-29. [http://dx.doi.org/10.1186/1744-8069-10-29]. [PMID: 24886406]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Barragán-Iglesias P., Mendoza-Garcés L., Pineda-Farias J.B., Solano-Olivares V., Rodríguez-Silverio J., Flores-Murrieta F.J., Granados-Soto V., Rocha-González H.I. Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats. Pharmacol. Biochem. Behav. 2015;128:23–32. doi: 10.1016/j.pbb.2014.11.001. [http://dx.doi.org/10.1016/j.pbb.2014.11.001]. [PMID: 25449358]. [DOI] [PubMed] [Google Scholar]
- 162.Kobayashi N., Karisola P., Peña-Cruz V., Dorfman D.M., Jinushi M., Umetsu S.E., Butte M.J., Nagumo H., Chernova I., Zhu B., Sharpe A.H., Ito S., Dranoff G., Kaplan G.G., Casasnovas J.M., Umetsu D.T., Dekruyff R.H., Freeman G.J. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity. 2007;27(6):927–940. doi: 10.1016/j.immuni.2007.11.011. [http://dx.doi.org/10.1016/j.immuni.2007.11.011]. [PMID: 18082433]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Kobayashi K., Yamanaka H., Fukuoka T., Dai Y., Obata K., Noguchi K. P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J. Neurosci. 2008;28(11):2892–2902. doi: 10.1523/JNEUROSCI.5589-07.2008. [http://dx.doi.org/10.1523/JNEUROSCI. 5589-07.2008]. [PMID: 18337420]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Tozaki-Saitoh H., Tsuda M., Miyata H., Ueda K., Kohsaka S., Inoue K. P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J. Neurosci. 2008;28(19):4949–4956. doi: 10.1523/JNEUROSCI.0323-08.2008. [http://dx.doi.org/10.1523/JNEUROSCI.0323-08.2008]. [PMID: 18463248]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Sipe G.O., Lowery R.L., Tremblay M.È., Kelly E.A., Lamantia C.E., Majewska A.K. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat. Commun. 2016;7:10905. doi: 10.1038/ncomms10905. [http://dx.doi.org/10.1038/ncomms10905]. [PMID: 26948129]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.Dennis J., Morgan M.K., Graf M.R., Fuss B. P2Y12 receptor expression is a critical determinant of functional responsiveness to ATXs MORFO domain. Purinergic Signal. 2012;8(2):181–190. doi: 10.1007/s11302-011-9283-2. [http://dx.doi.org/10.1007/s11302-011-9283-2]. [PMID: 22139091]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Amadio S., Parisi C., Montilli C., Carrubba A.S., Apolloni S., Volonté C. P2Y(12) receptor on the verge of a neuroinflammatory breakdown. Mediators Inflamm. 2014 doi: 10.1155/2014/975849. [http://dx.doi.org/10.1002/ glia.10248]. [PMID: 12898701]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Fumagalli M., Brambilla R., DAmbrosi N., Volonté C., Matteoli M., Verderio C., Abbracchio M.P. Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia. 2003;43(3):218–03. doi: 10.1002/glia.10248. [http://dx.doi.org/10.1002/ glia.10248]. [PMID: 12898701]. [DOI] [PubMed] [Google Scholar]
- 169.Kawaguchi A., Sato M., Kimura M., Ichinohe T., Tazaki M., Shibukawa Y. Expression and function of purinergic P2Y12 receptors in rat trigeminal ganglion neurons. Neurosci. Res. 2015;98:17–27. doi: 10.1016/j.neures.2015.04.008. [http://dx.doi.org/10.1016/j.neures.2015.04.008]. [PMID: 25987295]. [DOI] [PubMed] [Google Scholar]
- 170.Moore C.S., Ase A.R., Kinsara A., Rao V.T., Michell-Robinson M., Leong S.Y., Butovsky O., Ludwin S.K., Séguéla P., Bar-Or A., Antel J.P. P2Y12 expression and function in alternatively activated human microglia. Neurol. Neuroimmunol. Neuroinflamm. 2015;2(2):e80. doi: 10.1212/NXI.0000000000000080. [http://dx.doi.org/10.1212/NXI.0000000000000080]. [PMID: 25821842]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Haynes S.E., Hollopeter G., Yang G., Kurpius D., Dailey M.E., Gan W.B., Julius D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 2006;9(12):1512–1519. doi: 10.1038/nn1805. [http://dx.doi.org/10.1038/nn1805]. [PMID: 17115040]. [DOI] [PubMed] [Google Scholar]
- 172.Sieger D., Moritz C., Ziegenhals T., Prykhozhij S., Peri F. Long-range Ca2+ waves transmit brain-damage signals to microglia. Dev. Cell. 2012;22(6):1138–1148. doi: 10.1016/j.devcel.2012.04.012. [http://dx.doi.org/10.1016/j.devcel.2012.04.012]. [PMID: 22632801]. [DOI] [PubMed] [Google Scholar]
- 173.Veggetti M., Muchnik S., Losavio A. Effect of purines on calcium-independent acetylcholine release at the mouse neuro- muscular junction. Neuroscience. 2008;154(4):1324–1336. doi: 10.1016/j.neuroscience.2008.04.056. [http://dx.doi.org/10.1016/j.neuroscience.2008.04.056]. [PMID: 18534762]. [DOI] [PubMed] [Google Scholar]
- 174.Giniatullin A., Petrov A., Giniatullin R. The involvement of P2Y12 receptors, NADPH oxidase, and lipid rafts in the action of extracellular ATP on synaptic transmission at the frog neuro- muscular junction. Neuroscience. 2015;285:324–332. doi: 10.1016/j.neuroscience.2014.11.039. [http://dx. doi.org/10.1016/j.neuroscience.2014.11.039]. [PMID: 25463521]. [DOI] [PubMed] [Google Scholar]
- 175.Katagiri A., Shinoda M., Honda K., Toyofuku A., Sessle B.J., Iwata K. Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats. Mol. Pain. 2012;8:23. doi: 10.1186/1744-8069-8-23. [http://dx.doi.org/10.1186/1744-8069-8-23]. [PMID: 22458630]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176.Lorier A.R., Huxtable A.G., Robinson D.M., Lipski J., Housley G.D., Funk G.D. P2Y1 receptor modulation of the pre-Bötzinger complex inspiratory rhythm generating network in vitro. J. Neurosci. 2007;27(5):993–1005. doi: 10.1523/JNEUROSCI.3948-06.2007. [http://dx.doi.org/10.1523/ JNEUROSCI.3948-06.2007]. [PMID: 17267553]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177.Jimenez-Pacheco A., Diaz-Hernandez M., Arribas-Blázquez M., Sanz-Rodriguez A., Olivos-Oré L.A., Artalejo A.R., Alves M., Letavic M., Miras-Portugal M.T., Conroy R.M., Delanty N., Farrell M.A., OBrien D.F., Bhattacharya A., Engel T., Henshall D.C. Transient P2X7 receptor antagonism produces lasting reductions in spontaneous seizures and gliosis in experimental temporal lobe epilepsy. J. Neurosci. 2016;36(22):5920–5932. doi: 10.1523/JNEUROSCI.4009-15.2016. [http://dx.doi.org/10.1523/JNEUROSCI.4009-15.2016]. [PMID: 27251615]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Skaper S.D., Debetto P., Giusti P. The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J. 2010;24(2):337–345. doi: 10.1096/fj.09-138883. [http://dx.doi.org/10.1096/fj.09-138883]. [PMID: 19812374]. [DOI] [PubMed] [Google Scholar]
- 179.Skaper S.D., Facci L., Culbert A.A., Evans N.A., Chessell I., Davis J.B., Richardson J.C. P2X(7) receptors on microglial cells mediate injury to cortical neurons in vitro. Glia. 2006;54(3):234–242. doi: 10.1002/glia.20379. [http://dx.doi.org/10.1002/glia.20379]. [PMID: 16817206]. [DOI] [PubMed] [Google Scholar]
- 180.Facci L., Barbierato M., Marinelli C., Argentini C., Skaper S.D., Giusti P. Toll-like receptors 2, -3 and -4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1β release. Sci. Rep. 2014;4:6824. doi: 10.1038/srep06824. [http://dx.doi.org/10.1038/srep06824]. [PMID: 25351234]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Wilkinson K., El Khoury J. Microglial scavenger receptors and their roles in the pathogenesis of Alzheimers disease. Int. J.Alzheimers Dis. 2012 doi: 10.1155/2012/489456. 489456. [http://dx.doi.org/10.1155/2012/489456] [PMID: 22666621]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182.Thomas C.A., Li Y., Kodama T., Suzuki H., Silverstein S.C., El Khoury J. Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J. Exp. Med. 2000;191(1):147–156. doi: 10.1084/jem.191.1.147. [http://dx.doi.org/10.1084/jem.191.1. 147]. [PMID: 10620613]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Hampton R.Y., Golenbock D.T., Penman M., Krieger M., Raetz C.R. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature. 1991;352(6333):342–344. doi: 10.1038/352342a0. [http://dx.doi.org/10. 1038/352342a0]. [PMID: 1852209]. [DOI] [PubMed] [Google Scholar]
- 184.Greenberg J.W., Fischer W., Joiner K.A. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect. Immun. 1996;64(8):3318–3325. doi: 10.1128/iai.64.8.3318-3325.1996. [PMID: 8757870]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Tsay H.J., Huang Y.C., Chen Y.J., Lee Y.H., Hsu S.M., Tsai K.C., Yang C.N., Huang F.L., Shie F.S., Lee L.C., Shiao Y.J. Identifying N-linked glycan moiety and motifs in the cysteine-rich domain critical for N-glycosylation and intracellular trafficking of SR-AI and MARCO. J. Biomed. Sci. 2016;23:27. doi: 10.1186/s12929-016-0244-5. [http://dx.doi.org/10.1186/s12929-016-0244-5]. [PMID: 26892079]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186.Haisma H.J., Boesjes M., Beerens A.M., van der Strate B.W., Curiel D.T., Plüddemann A., Gordon S., Bellu A.R. Scavenger receptor A: a new route for adenovirus 5. Mol. Pharm. 2009;6(2):366–374. doi: 10.1021/mp8000974. [http://dx.doi.org/10.1021/mp8000974]. [PMID: 19227971]. [DOI] [PubMed] [Google Scholar]
- 187.Li Y., Liu L., Liu D., Woodward S., Barger S.W., Mrak R.E., Griffin W.S. Microglial activation by uptake of fDNA via a scavenger receptor. J. Neuroimmunol. 2004;147(1-2):50–55. doi: 10.1016/j.jneuroim.2003.10.043. [http://dx.doi.org/10.1016/j.jneuroim.2003.10.043]. [PMID: 14741427]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 188.Alarcón R., Fuenzalida C., Santibáñez M., von Bernhardi R. Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J. Biol. Chem. 2005;280(34):30406–30415. doi: 10.1074/jbc.M414686200. [http://dx.doi.org/10.1074/jbc.M414686200]. [PMID: 15987691]. [DOI] [PubMed] [Google Scholar]
- 189.da Costa C.C., van der Laan L.J., Dijkstra C.D., Brück W. The role of the mouse macrophage scavenger receptor in myelin phagocytosis. Eur. J. Neurosci. 1997;9(12):2650–2657. doi: 10.1111/j.1460-9568.1997.tb01694.x. [http://dx.doi.org/10.1111/j.1460-9568.1997.tb01694.x]. [PMID: 9517470]. [DOI] [PubMed] [Google Scholar]
- 190.Hendrickx D.A., Koning N., Schuurman K.G., van Strien M.E., van Eden C.G., Hamann J., Huitinga I. Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclerosis. J. Neuropathol. Exp. Neurol. 2013;72(2):106–118. doi: 10.1097/NEN.0b013e31827fd9e8. [http://dx.doi.org/10.1097/NEN.0b013e31827fd9e8]. [PMID: 23334594]. [DOI] [PubMed] [Google Scholar]
- 191.Nakamura T., Suzuki H., Wada Y., Kodama T., Doi T. Fucoidan induces nitric oxide production via p38 mitogen-activated protein kinase and NF-kappaB-dependent signaling pathways through macrophage scavenger receptors. Biochem. Biophys. Res. Commun. 2006;343(1):286–294. doi: 10.1016/j.bbrc.2006.02.146. [http://dx.doi.org/10.1016/ j.bbrc.2006.02.146]. [PMID: 16540084]. [DOI] [PubMed] [Google Scholar]
- 192.Cui Y.Q., Zhang L.J., Zhang T., Luo D.Z., Jia Y.J., Guo Z.X., Zhang Q.B., Wang X., Wang X.M. Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide-activated primary microglia. Clin. Exp. Pharmacol. Physiol. 2010;37(4):422–428. doi: 10.1111/j.1440-1681.2009.05314.x. [http://dx.doi.org/10.1111/j.1440-1681.2009.05314.x]. [PMID: 19843098]. [DOI] [PubMed] [Google Scholar]
- 193.Gao Y., Li C., Yin J., Shen J., Wang H., Wu Y., Jin H. Fucoidan, a sulfated polysaccharide from brown algae, improves cognitive impairment induced by infusion of Aβ peptide in rats. Environ. Toxicol. Pharmacol. 2012;33(2):304–311. doi: 10.1016/j.etap.2011.12.022. [http://dx.doi.org/10.1016/j.etap.2011.12.022]. [PMID: 22301160]. [DOI] [PubMed] [Google Scholar]
- 194.Kang G.H., Yan B.C., Cho G.S., Kim W.K., Lee C.H., Cho J.H., Kim M., Kang I.J., Won M.H., Lee J.C. Neuroprotective effect of fucoidin on lipopolysaccharide accelerated cerebral ischemic injury through inhibition of cytokine expression and neutrophil infiltration. J. Neurol. Sci. 2012;318(1-2):25–30. doi: 10.1016/j.jns.2012.04.013. [http://dx.doi.org/10.1016/j.jns.2012.04.013]. [PMID: 22560605]. [DOI] [PubMed] [Google Scholar]
- 195.Lee B., Shim I., Lee H., Hahm D.H. Fucoidan prevents depression-like behavior in rats exposed to repeated restraint stress. J. Nat. Med. 2013;67(3):534–544. doi: 10.1007/s11418-012-0712-5. [http://dx.doi.org/10.1007/ s11418-012-0712-5]. [PMID: 23090005]. [DOI] [PubMed] [Google Scholar]
- 196.Hu C., Zhang G., Zhao Y.T. Fucoidan attenuates the existing allodynia and hyperalgesia in a rat model of neuropathic pain. Neurosci. Lett. 2014;571:66–71. doi: 10.1016/j.neulet.2014.04.030. [http://dx.doi.org/10.1016/ j.neulet.2014.04.030]. [PMID: 24792391]. [DOI] [PubMed] [Google Scholar]
- 197.Suberbielle E., Sanchez P.E., Kravitz A.V., Wang X., Ho K., Eilertson K., Devidze N., Kreitzer A.C., Mucke L. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci. 2013;16(5):613–621. doi: 10.1038/nn.3356. [http://dx.doi.org/10.1038/nn.3356]. [PMID: 23525040]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Sheng J.G., Mrak R.E., Jones R.A., Brewer M.M., Zhou X.Q., McGinness J., Woodward S., Bales K., Paul S.M., Cordell B., Griffin W.S. Neuronal DNA damage correlates with overexpression of interleukin-1beta converting enzyme in APPV717F mice. Neurobiol. Aging. 2001;22(6):895–902. doi: 10.1016/s0197-4580(01)00298-6. [http://dx.doi.org/10.1016/ S0197-4580(01)00298-6]. [PMID: 11754996]. [DOI] [PubMed] [Google Scholar]
- 199.Egensperger R., Maslim J., Bisti S., Holländer H., Stone J. Fate of DNA from retinal cells dying during development: uptake by microglia and macroglia (Müller cells). Brain Res. Dev. Brain Res. 1996;97(1):1–8. doi: 10.1016/s0165-3806(96)00119-8. [http://dx.doi.org/10.1016/S0165-3806(96)00119-8]. [PMID: 8946048]. [DOI] [PubMed] [Google Scholar]
- 200.Ferrer I. Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum. 2002;1(3):213–222. doi: 10.1080/14734220260418448. [http://dx.doi.org/10.1080/14734220260418448]. [PMID: 12879983]. [DOI] [PubMed] [Google Scholar]
- 201.Mori N., Ishiba Y., Kubota S., Kobayashi A., Higashide T., McLaren M.J., Inana G. Truncation mutation in HRG4 (UNC119) leads to mitochondrial ANT-1-mediated photoreceptor synaptic and retinal degeneration by apoptosis. Invest. Ophthalmol. Vis. Sci. 2006;47(4):1281–1292. doi: 10.1167/iovs.05-0493. [http://dx.doi.org/10.1167/iovs.05-0493]. [PMID: 16565359]. [DOI] [PubMed] [Google Scholar]
- 202.Nolan Y., Minogue A., Vereker E., Bolton A.E., Campbell V.A., Lynch M.A. Attenuation of LPS-induced changes in synaptic activity in rat hippocampus by Vasogens Immune Modulation Therapy. Neuroimmunomodulation. 2002;10(1):40–46. doi: 10.1159/000064413. [http://dx.doi.org/10.1159/000064413]. [PMID: 12207162]. [DOI] [PubMed] [Google Scholar]
- 203.Martin D.S., Lonergan P.E., Boland B., Fogarty M.P., Brady M., Horrobin D.F., Campbell V.A., Lynch M.A. Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J. Biol. Chem. 2002;277(37):34239–34246. doi: 10.1074/jbc.M205289200. [http://dx.doi.org/10.1074/jbc.M205289200]. [PMID: 12091394]. [DOI] [PubMed] [Google Scholar]
- 204.Schluesener H.J., Seid K., Deininger M., Schwab J. Transient in vivo activation of rat brain macrophages/microglial cells and astrocytes by immunostimulatory multiple CpG oligonucleotides. J. Neuroimmunol. 2001;113(1):89–94. doi: 10.1016/s0165-5728(00)00428-8. [http://dx.doi.org/10.1016/ S0165-5728(00)00428-8]. [PMID: 11137580]. [DOI] [PubMed] [Google Scholar]
- 205.Dalpke A.H., Schäfer M.K., Frey M., Zimmermann S., Tebbe J., Weihe E., Heeg K. Immunostimulatory CpG-DNA activates murine microglia. J. Immunol. 2002;168(10):4854–4863. doi: 10.4049/jimmunol.168.10.4854. [http://dx.doi.org/10.4049/jimmunol.168.10.4854]. [PMID: 11994434]. [DOI] [PubMed] [Google Scholar]
- 206.Iribarren P., Chen K., Hu J., Gong W., Cho E.H., Lockett S., Uranchimeg B., Wang J.M. CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid beta 142 peptide by up-regulating the expression of the G-protein- coupled receptor mFPR2. FASEB J. 2005;19(14):2032–2034. doi: 10.1096/fj.05-4578fje. [PMID: 16219804]. [DOI] [PubMed] [Google Scholar]
- 207.Zhang Z., Guo K., Schluesener H.J. The immunostimulatory activity of CpG oligonucleotides on microglial N9 cells is affected by a polyguanosine motif. J. Neuroimmunol. 2005;161(1-2):68–77. doi: 10.1016/j.jneuroim.2004.12.009. [http://dx.doi.org/10.1016/j.jneuroim.2004.12.009]. [PMID: 15748945]. [DOI] [PubMed] [Google Scholar]
- 208.Zhang Z., Weinschenk T., Schluesener H.J. Uptake, intracellular distribution, and novel binding proteins of immunostimulatory CpG oligodeoxynucleotides in microglial cells. J. Neuroimmunol. 2005;160(1-2):32–40. doi: 10.1016/j.jneuroim.2004.10.030. [http://dx.doi.org/10.1016/j.jneuroim.2004.10. 030]. [PMID: 15710455]. [DOI] [PubMed] [Google Scholar]
- 209.Tauber S.C., Ebert S., Weishaupt J.H., Reich A., Nau R., Gerber J. Stimulation of Toll-like receptor 9 by chronic intraventricular unmethylated cytosine-guanine DNA infusion causes neuroinflammation and impaired spatial memory. J. Neuropathol. Exp. Neurol. 2009;68(10):1116–1124. doi: 10.1097/NEN.0b013e3181b7fde5. [http://dx.doi.org/10.1097/NEN.0b013e3181b7fde5]. [PMID: 19918123]. [DOI] [PubMed] [Google Scholar]
- 210.Brandenburg L.O., Jansen S., Albrecht L.J., Merres J., Gerber J., Pufe T., Tauber S.C. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J. Neuroimmunol. 2013;255(1-2):18–31. doi: 10.1016/j.jneuroim.2012.10.012. [http://dx.doi.org/10. 1016/j.jneuroim.2012.10.012]. [PMID: 23141747]. [DOI] [PubMed] [Google Scholar]
- 211.Ji Y., Zhou Y., Pan J., Li X., Wang H., Wang Y. Temporal pattern of Toll-like receptor 9 upregulation in neurons and glial cells following cerebral ischemia reperfusion in mice. Int. J. Neurosci. 2016;126(3):269–277. doi: 10.3109/00207454.2015.1010649. [http://dx.doi.org/10.3109/ 00207454.2015.1010649]. [PMID: 26000727]. [DOI] [PubMed] [Google Scholar]
- 212.Iliev A.I., Stringaris A.K., Nau R., Neumann H. Neuronal injury mediated via stimulation of microglial toll-like receptor-9 (TLR9). FASEB J. 2004;18(2):412–414. doi: 10.1096/fj.03-0670fje. [PMID: 14688201]. [DOI] [PubMed] [Google Scholar]
- 213.Kaul D., Habbel P., Derkow K., Krüger C., Franzoni E., Wulczyn F.G., Bereswill S., Nitsch R., Schott E., Veh R., Naumann T., Lehnardt S. Expression of Toll-like receptors in the developing brain. PLoS One. 2012;7(5):e37767. doi: 10.1371/journal.pone.0037767. [http://dx. doi.org/10.1371/journal.pone.0037767]. [PMID: 22666391]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214.Takeshita S., Takeshita F., Haddad D.E., Janabi N., Klinman D.M. Activation of microglia and astrocytes by CpG oligodeoxynucleotides. Neuroreport. 2001;12(14):3029–3032. doi: 10.1097/00001756-200110080-00010. [http://dx.doi.org/10.1097/00001756-200110080-00010]. [PMID: 11568631]. [DOI] [PubMed] [Google Scholar]
- 215.Patel V., Patel A., McArdle J. Synaptic Abnormalities of Mice Lacking Toll Like Receptor (TLR) -9. FASEB J. 2015;29(1) Supplement LB39 doi: 10.1016/j.neuroscience.2016.03.001. [DOI] [PubMed] [Google Scholar]
- 216.Pinheiro de Oliveira T.F., Fonseca Júnior A.A., Camargos M.F., de Oliveira A.M., Lima N.F., Freitas M.E., de Oliveira Guedes E., de Azevedo I.C., Pinto C.A.C., Heinemann M.B. Porcine parvovirus as a contaminant in cell cultures and laboratory supplies. Biologicals. 2016;44:44–53. doi: 10.1016/j.biologicals.2015.12.003. [http://dx.doi.org/10.1016/j.biologicals.2015.12.003] [DOI] [PubMed] [Google Scholar]
- 217.Papa S., Caron I., Rossi F., Veglianese P. Modulators of microglia: a patent review. Expert Opin. Ther. Pat. 2016;26(4):427–437. doi: 10.1517/13543776.2016.1135901. [http://dx.doi.org/10.1517/13543776.2016.1135901]. [PMID: 26726838]. [DOI] [PubMed] [Google Scholar]
- 218.Cox D.J., Field R.H., Williams D.G., Baran M., Bowie A.G., Cunningham C., Dunne A. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia. 2015;63(5):812–825. doi: 10.1002/glia.22786. [http://dx.doi.org/10.1002/glia.22786]. [PMID: 25627810]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 219.Costello D.A., Lynch M.A. Toll-like receptor 3 activation modulates hippocampal network excitability, via glial production of interferon-β. Hippocampus. 2013;23(8):696–707. doi: 10.1002/hipo.22129. [http://dx. doi.org/10.1002/hipo.22129]. [PMID: 23554175]. [DOI] [PubMed] [Google Scholar]
- 220.Liu T., Berta T., Xu Z.Z., Park C.K., Zhang L., Lü N., Liu Q., Liu Y., Gao Y.J., Liu Y.C., Ma Q., Dong X., Ji R.R. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J. Clin. Invest. 2012;122(6):2195–2207. doi: 10.1172/JCI45414. [http://dx.doi.org/10.1172/JCI45414]. [PMID: 22565312]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 221.Fadok V.A., Warner M.L., Bratton D.L., Henson P.M. CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J. Immunol. 1998;161(11):6250–6257. [PMID: 9834113]. [PubMed] [Google Scholar]
- 222.Fadok V.A., Bratton D.L., Rose D.M., Pearson A., Ezekewitz R.A., Henson P.M. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000;405(6782):85–90. doi: 10.1038/35011084. [http://dx.doi.org/10.1038/35011084]. [PMID: 10811223]. [DOI] [PubMed] [Google Scholar]
- 223.Kawasaki Y., Nakagawa A., Nagaosa K., Shiratsuchi A., Nakanishi Y. Phosphatidylserine binding of class B scavenger receptor type I, a phagocytosis receptor of testicular sertoli cells. J. Biol. Chem. 2002;277(30):27559–27566. doi: 10.1074/jbc.M202879200. [http://dx.doi.org/10.1074/jbc.M202879200]. [PMID: 12016218]. [DOI] [PubMed] [Google Scholar]
- 224.Fadok V.A., Bratton D.L., Frasch S.C., Warner M.L., Henson P.M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 1998;5(7):551–562. doi: 10.1038/sj.cdd.4400404. [http://dx.doi.org/10.1038/sj.cdd.4400404]. [PMID: 10200509]. [DOI] [PubMed] [Google Scholar]
- 225.De Simone R., Ajmone-Cat M.A., Tirassa P., Minghetti L. Apoptotic PC12 cells exposing phosphatidylserine promote the production of anti-inflammatory and neuroprotective molecules by microglial cells. J. Neuropathol. Exp. Neurol. 2003;62(2):208–216. doi: 10.1093/jnen/62.2.208. [http://dx.doi.org/10.1093/jnen/62.2.208]. [PMID: 12578230]. [DOI] [PubMed] [Google Scholar]
- 226.Chan A., Seguin R., Magnus T., Papadimitriou C., Toyka K.V., Antel J.P., Gold R. Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia. 2003;43(3):231–242. doi: 10.1002/glia.10258. [http://dx.doi.org/10.1002/glia.10258]. [PMID: 12898702]. [DOI] [PubMed] [Google Scholar]
- 227.De Simone R., Ajmone-Cat M.A., Minghetti L. Atypical antiinflammatory activation of microglia induced by apoptotic neurons: possible role of phosphatidylserine-phosphatidylserine receptor interaction. Mol. Neurobiol. 2004;29(2):197–212. doi: 10.1385/MN:29:2:197. [http://dx.doi.org/10.1385/MN:29:2:197]. [PMID: 15126686]. [DOI] [PubMed] [Google Scholar]
- 228.Hirt U.A., Leist M. Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death Differ. 2003;10(10):1156–1164. doi: 10.1038/sj.cdd.4401286. [http://dx.doi.org/10.1038/sj.cdd.4401286]. [PMID: 14502239]. [DOI] [PubMed] [Google Scholar]
- 229.Mercanti G., Ragazzi E., Toffano G., Giusti P., Zusso M. Phosphatidylserine and curcumin act synergistically to down-regulate release of interleukin-1β from lipopolysaccharide-stimulated cortical primary microglial cells. CNS Neurol. Disord. Drug Targets. 2014;13(5):792–800. doi: 10.2174/1871527313666140414121723. [http://dx.doi.org/10.2174/ 1871527313666140414121723]. [PMID: 24725086]. [DOI] [PubMed] [Google Scholar]
- 230.Huynh M.L., Fadok V.A., Henson P.M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J. Clin. Invest. 2002;109(1):41–50. doi: 10.1172/JCI11638. [http://dx.doi.org/10.1172/JCI0211638]. [PMID: 11781349]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 231.Wu Z., Nakanishi H. Phosphatidylserine-containing liposomes: potential pharmacological interventions against inflammatory and immune diseases through the production of prostaglandin E(2) after uptake by myeloid derived phagocytes. Arch. Immunol. Ther. Exp. (Warsz.) 2011;59(3):195–201. doi: 10.1007/s00005-011-0123-4. [http://dx.doi.org/10.1007/s00005-011-0123-4]. [PMID: 21479802]. [DOI] [PubMed] [Google Scholar]
- 232.Park S.Y., Jung M.Y., Kim H.J., Lee S.J., Kim S.Y., Lee B.H., Kwon T.H., Park R.W., Kim I.S. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ. 2008;15(1):192–201. doi: 10.1038/sj.cdd.4402242. [http://dx.doi.org/10.1038/sj.cdd. 4402242]. [PMID: 17962816]. [DOI] [PubMed] [Google Scholar]
- 233.Miyanishi M., Tada K., Koike M., Uchiyama Y., Kitamura T., Nagata S. Identification of Tim4 as a phosphatidylserine receptor. Nature. 2007;450(7168):435–439. doi: 10.1038/nature06307. [http://dx.doi.org/10.1038/ nature06307]. [PMID: 17960135]. [DOI] [PubMed] [Google Scholar]
- 234.Mazaheri F., Breus O., Durdu S., Haas P., Wittbrodt J., Gilmour D., Peri F. Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nat. Commun. 2014;5:4046. doi: 10.1038/ncomms5046. [http://dx.doi.org/10.1038/ncomms5046]. [PMID: 24898390]. [DOI] [PubMed] [Google Scholar]
- 235.Ishimoto Y., Ohashi K., Mizuno K., Nakano T. Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J. Biochem. 2000;127(3):411–417. doi: 10.1093/oxfordjournals.jbchem.a022622. [http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022622]. [PMID: 10731712]. [DOI] [PubMed] [Google Scholar]
- 236.Hanayama R., Tanaka M., Miwa K., Shinohara A., Iwamatsu A., Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002;417(6885):182–187. doi: 10.1038/417182a. [http://dx.doi.org/10.1038/417182a]. [PMID: 12000961]. [DOI] [PubMed] [Google Scholar]
- 237.Leonardi-Essmann F., Emig M., Kitamura Y., Spanagel R., Gebicke-Haerter P.J. Fractalkine-upregulated milk-fat globule EGF factor-8 protein in cultured rat microglia. J. Neuroimmunol. 2005;160(1-2):92–101. doi: 10.1016/j.jneuroim.2004.11.012. [http://dx.doi.org/10.1016/j.jneuroim.2004. 11.012]. [PMID: 15710462]. [DOI] [PubMed] [Google Scholar]
- 238.Fuller A.D., Van Eldik L.J. MFG-E8 regulates microglial phagocytosis of apoptotic neurons. J. Neuroimmune Pharmacol. 2008;3(4):246–256. doi: 10.1007/s11481-008-9118-2. [http://dx.doi.org/10.1007/s11481-008-9118-2]. [PMID: 18670887]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 239.Grommes C., Lee C.Y., Wilkinson B.L., Jiang Q., Koenigsknecht-Talboo J.L., Varnum B., Landreth G.E. Regulation of microglial phagocytosis and inflammatory gene expression by Gas6 acting on the Axl/Mer family of tyrosine kinases. J. Neuroimmune Pharmacol. 2008;3(2):130–140. doi: 10.1007/s11481-007-9090-2. [http://dx.doi.org/10.1007/s11481-007-9090-2]. [PMID: 18247125]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 240.Neher J.J., Emmrich J.V., Fricker M., Mander P.K., Théry C., Brown G.C. Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc. Natl. Acad. Sci. USA. 2013;110(43):E4098–E4107. doi: 10.1073/pnas.1308679110. [http://dx.doi.org/10.1073/pnas.1308679110]. [PMID: 24101459]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 241.Spittau B., Rilka J., Steinfath E., Zöller T., Krieglstein K. TGFβ1 increases microglia-mediated engulfment of apoptotic cells via upregulation of the milk fat globule-EGF factor 8. Glia. 2015;63(1):142–153. doi: 10.1002/glia.22740. [http://dx.doi.org/10.1002/glia.22740]. [PMID: 25130376]. [DOI] [PubMed] [Google Scholar]
- 242.Fricker M., Neher J.J., Zhao J.W., Théry C., Tolkovsky A.M., Brown G.C. MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J. Neurosci. 2012;32(8):2657–2666. doi: 10.1523/JNEUROSCI.4837-11.2012. [http://dx.doi.org/10.1523/JNEUROSCI.4837-11.2012]. [PMID: 22357850]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 243.Neniskyte U., Brown G.C. Lactadherin/MFG-E8 is essential for microglia-mediated neuronal loss and phagoptosis induced by amyloid β. J. Neurochem. 2013;126(3):312–317. doi: 10.1111/jnc.12288. [http://dx. doi.org/10.1111/jnc.12288]. [PMID: 23647050]. [DOI] [PubMed] [Google Scholar]
- 244.Sokolowski J.D., Nobles S.L., Heffron D.S., Park D., Ravichandran K.S., Mandell J.W. Brain-specific angiogenesis inhibitor-1 expression in astrocytes and neurons: implications for its dual function as an apoptotic engulfment receptor. Brain Behav. Immun. 2011;25(5):915–921. doi: 10.1016/j.bbi.2010.09.021. [http://dx.doi.org/10.1016/j.bbi. 2010.09.021]. [PMID: 20888903]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 245.Zhu D., Li C., Swanson A.M., Villalba R.M., Guo J., Zhang Z., Matheny S., Murakami T., Stephenson J.R., Daniel S., Fukata M., Hall R.A., Olson J.J., Neigh G.N., Smith Y., Rainnie D.G., Van Meir E.G. BAI1 regulates spatial learning and synaptic plasticity in the hippocampus. J. Clin. Invest. 2015;125(4):1497–1508. doi: 10.1172/JCI74603. [http://dx.doi.org/10.1172/JCI74603]. [PMID: 25751059]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 246.Chang G.H., Barbaro N.M., Pieper R.O. Phosphatidylserine-dependent phagocytosis of apoptotic glioma cells by normal human microglia, astrocytes, and glioma cells. Neuro-oncol. 2000;2(3):174–183. doi: 10.1093/neuonc/2.3.174. [PMID: 11302338]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 247.Neniskyte U., Neher J.J., Brown G.C. Neuronal death induced by nanomolar amyloid β is mediated by primary phagocytosis of neurons by microglia. J. Biol. Chem. 2011;286(46):39904–39913. doi: 10.1074/jbc.M111.267583. [http://dx.doi.org/10.1074/jbc.M111.267583]. [PMID: 21903584]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 248.Derecki N.C., Cronk J.C., Lu Z., Xu E., Abbott S.B., Guyenet P.G., Kipnis J. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature. 2012;484(7392):105–109. doi: 10.1038/nature10907. [http://dx.doi.org/10.1038/nature10907]. [PMID: 22425995]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 249.Witting A., Müller P., Herrmann A., Kettenmann H., Nolte C. Phagocytic clearance of apoptotic neurons by Microglia/Brain macrophages in vitro: involvement of lectin-, integrin-, and phosphatidylserine-mediated recognition. J. Neurochem. 2000;75(3):1060–1070. doi: 10.1046/j.1471-4159.2000.0751060.x. [http://dx.doi.org/10.1046/j.1471-4159.2000. 0751060.x]. [PMID: 10936187]. [DOI] [PubMed] [Google Scholar]
- 250.Miksa M., Amin D., Wu R., Ravikumar T.S., Wang P. Fractalkine-induced MFG-E8 leads to enhanced apoptotic cell clearance by macrophages. Mol. Med. 2007;13(11-12):553–560. doi: 10.2119/2007-00019.Miksa. [http://dx.doi.org/10.2119/2007-00019.Miksa]. [PMID: 17673941]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 251.Akiyama H., Kawamata T., Dedhar S., McGeer P.L. Immuno- histochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue. J. Neuroimmunol. 1991;32(1):19–28. doi: 10.1016/0165-5728(91)90067-h. [http://dx.doi.org/10.1016/0165-5728(91)90067-H]. [PMID: 1705945]. [DOI] [PubMed] [Google Scholar]
- 252.Milner R., Crocker S.J., Hung S., Wang X., Frausto R.F., del Zoppo G.J. Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5. J. Immunol. 2007;178(12):8158–8167. doi: 10.4049/jimmunol.178.12.8158. [http://dx.doi.org/10.4049/jimmunol.178.12. 8158]. [PMID: 17548654]. [DOI] [PubMed] [Google Scholar]
- 253.Welser-Alves J.V., Milner R. Microglia are the major source of TNF-α and TGF-β1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem. Int. 2013;63(1):47–53. doi: 10.1016/j.neuint.2013.04.007. [http://dx.doi.org/10.1016/j.neuint.2013.04.007]. [PMID: 23619393]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 254.Neniskyte U., Vilalta A., Brown G.C. Tumour necrosis factor alpha-induced neuronal loss is mediated by microglial phagocytosis. FEBS Lett. 2014;588(17):2952–2956. doi: 10.1016/j.febslet.2014.05.046. [http://dx. doi.org/10.1016/j.febslet.2014.05.046]. [PMID: 24911209]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 255.Vasilyev D.V., Barish M.E. Regulation of the hyperpolarization-activated cationic current Ih in mouse hippocampal pyramidal neurones by vitronectin, a component of extracellular matrix. J. Physiol. 2004;560(Pt 3):659–675. doi: 10.1113/jphysiol.2004.069104. [http://dx.doi.org/10.1113/ jphysiol.2004.069104]. [PMID: 15319414]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 256.Puia G., Losi G. Thyroid hormones modulate GABA(A) receptor-mediated currents in hippocampal neurons. Neuropharmacology. 2011;60(7-8):1254–1261. doi: 10.1016/j.neuropharm.2010.12.013. [http://dx.doi.org/10.1016/j.neuropharm. 2010.12.013]. [PMID: 21215272]. [DOI] [PubMed] [Google Scholar]
- 257.Chung W.S., Clarke L.E., Wang G.X., Stafford B.K., Sher A., Chakraborty C., Joung J., Foo L.C., Thompson A., Chen C., Smith S.J., Barres B.A. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013;504(7480):394–400. doi: 10.1038/nature12776. [http://dx.doi.org/10.1038/nature12776]. [PMID: 24270812]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 258.Sather S., Kenyon K.D., Lefkowitz J.B., Liang X., Varnum B.C., Henson P.M., Graham D.K. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood. 2007;109(3):1026–1033. doi: 10.1182/blood-2006-05-021634. [http://dx.doi.org/10.1182/blood-2006-05-021634]. [PMID: 17047157]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 259.Healy L.M., Perron G., Won S.Y., Michell-Robinson M.A., Rezk A., Ludwin S.K., Moore C.S., Hall J.A., Bar-Or A., Antel J.P. MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells. J. Immunol. 2016 doi: 10.4049/jimmunol.1502562. [http://dx.doi.org/10.4049/jimmunol.1502562] [DOI] [PubMed] [Google Scholar]
- 260.van den Brand B.T., Abdollahi-Roodsaz S., Vermeij E.A., Bennink M.B., Arntz O.J., Rothlin C.V., van den Berg W.B., van de Loo F.A. Therapeutic efficacy of Tyro3, Axl, and Mer tyrosine kinase agonists in collagen-induced arthritis. Arthritis Rheum. 2013;65(3):671–680. doi: 10.1002/art.37786. [http://dx.doi.org/10.1002/art. 37786]. [PMID: 23203851]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 261.Rothlin C.V., Carrera-Silva E.A., Bosurgi L., Ghosh S. TAM receptor signaling in immune homeostasis. Annu. Rev. Immunol. 2015;33:355–391. doi: 10.1146/annurev-immunol-032414-112103. [http://dx.doi.org/10.1146/annurev-immunol-032414-112103]. [PMID: 25594431]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 262.Borghese C.M., Gómez R.A., Ramírez O.A. Phosphatidylserine increases hippocampal synaptic efficacy. Brain Res. Bull. 1993;31(6):697–700. doi: 10.1016/0361-9230(93)90143-y. [http://dx.doi.org/10.1016/0361-9230(93)90143-Y]. [PMID: 8100181]. [DOI] [PubMed] [Google Scholar]
- 263.Yang T.T., Wang S.J. Facilitation of glutamate release from rat cerebrocortical glutamatergic nerve terminals (synaptosomes) by phosphatidylserine and phosphatidylcholine. Synapse. 2009;63(3):215–223. doi: 10.1002/syn.20600. [http://dx.doi.org/10.1002/syn.20600]. [PMID: 19072841]. [DOI] [PubMed] [Google Scholar]
- 264.Hammond J.R., Martin I.L. Modulation of [3H]flunitrazepam binding to rat cerebellar benzodiazepine receptors by phos- phatidylserine. Eur. J. Pharmacol. 1987;137(1):49–58. doi: 10.1016/0014-2999(87)90181-6. [http://dx. doi.org/10.1016/0014-2999(87)90181-6]. [PMID: 3038577]. [DOI] [PubMed] [Google Scholar]
- 265.Nolan Y., Martin D., Campbell V.A., Lynch M.A. Evidence of a protective effect of phosphatidylserine-containing liposomes on lipopolysaccharide-induced impairment of long-term potentiation in the rat hippocampus. J. Neuroimmunol. 2004;151(1-2):12–23. doi: 10.1016/j.jneuroim.2004.02.001. [http://dx.doi.org/10.1016/j.jneuroim.2004.02.001]. [PMID: 15145599]. [DOI] [PubMed] [Google Scholar]
- 266.Nolan Y., Maher F.O., Martin D.S., Clarke R.M., Brady M.T., Bolton A.E., Mills K.H., Lynch M.A. Role of interleukin-4 in regulation of age-related inflammatory changes in the hippocampus. J. Biol. Chem. 2005;280(10):9354–9362. doi: 10.1074/jbc.M412170200. [http://dx.doi.org/10.1074/jbc.M412170200]. [PMID: 15615726]. [DOI] [PubMed] [Google Scholar]
- 267.Wildering W.C., Hermann P.M., Bulloch A.G. Rapid neuro- modulatory actions of integrin ligands. J. Neurosci. 2002;22(7):2419–2426. doi: 10.1523/JNEUROSCI.22-07-02419.2002. [PMID: 11923405]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 268.Wu X., Mogford J.E., Platts S.H., Davis G.E., Meininger G.A., Davis M.J. Modulation of calcium current in arteriolar smooth muscle by alphav beta3 and alpha5 beta1 integrin ligands. J. Cell Biol. 1998;143(1):241–252. doi: 10.1083/jcb.143.1.241. [http://dx.doi.org/10.1083/jcb.143.1. 241]. [PMID: 9763435]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 269.Hellwig S., Hack I., Kowalski J., Brunne B., Jarowyj J., Unger A., Bock H.H., Junghans D., Frotscher M. Role for Reelin in neurotransmitter release. J. Neurosci. 2011;31(7):2352–2360. doi: 10.1523/JNEUROSCI.3984-10.2011. [http://dx.doi.org/10.1523/JNEUROSCI.3984-10.2011]. [PMID: 21325502]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 270.Lin B., Arai A.C., Lynch G., Gall C.M. Integrins regulate NMDA receptor-mediated synaptic currents. J. Neurophysiol. 2003;89(5):2874–2878. doi: 10.1152/jn.00783.2002. [http://dx.doi.org/10.1152/jn.00783.2002]. [PMID: 12740418]. [DOI] [PubMed] [Google Scholar]
- 271.Bernard-Trifilo J.A., Kramár E.A., Torp R., Lin C.Y., Pineda E.A., Lynch G., Gall C.M. Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology. J. Neurochem. 2005;93(4):834–849. doi: 10.1111/j.1471-4159.2005.03062.x. [http://dx.doi.org/10.1111/j.1471-4159.2005.03062.x]. [PMID: 15857387]. [DOI] [PubMed] [Google Scholar]
- 272.Shi Y., Ethell I.M. Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J. Neurosci. 2006;26(6):1813–1822. doi: 10.1523/JNEUROSCI.4091-05.2006. [http://dx. doi.org/10.1523/JNEUROSCI.4091-05.2006]. [PMID: 16467530]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 273.Watson P.M., Humphries M.J., Relton J., Rothwell N.J., Verkhratsky A., Gibson R.M. Integrin-binding RGD peptides induce rapid intracellular calcium increases and MAPK signaling in cortical neurons. Mol. Cell. Neurosci. 2007;34(2):147–154. doi: 10.1016/j.mcn.2006.10.007. [http://dx.doi.org/10.1016/j.mcn.2006.10.007]. [PMID: 17150373]. [DOI] [PubMed] [Google Scholar]
- 274.Cingolani L.A., Thalhammer A., Yu L.M., Catalano M., Ramos T., Colicos M.A., Goda Y. Activity-dependent regulation of synaptic AMPA receptor composition and abundance by beta3 integrins. Neuron. 2008;58(5):749–762. doi: 10.1016/j.neuron.2008.04.011. [http://dx.doi.org/10. 1016/j.neuron.2008.04.011]. [PMID: 18549786]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 275.Charrier C., Machado P., Tweedie-Cullen R.Y., Rutishauser D., Mansuy I.M., Triller A. A crosstalk between β1 and β3 integrins controls glycine receptor and gephyrin trafficking at synapses. Nat. Neurosci. 2010;13(11):1388–1395. doi: 10.1038/nn.2645. [http://dx.doi.org/10.1038/ nn.2645]. [PMID: 20935643]. [DOI] [PubMed] [Google Scholar]
- 276.Kramár E.A., Bernard J.A., Gall C.M., Lynch G. Integrins modulate fast excitatory transmission at hippocampal synapses. J. Biol. Chem. 2003;278(12):10722–10730. doi: 10.1074/jbc.M210225200. [http://dx.doi.org/10. 1074/jbc.M210225200]. [PMID: 12524441]. [DOI] [PubMed] [Google Scholar]
- 277.Stäubli U., Chun D., Lynch G. Time-dependent reversal of long-term potentiation by an integrin antagonist. J. Neurosci. 1998;18(9):3460–3469. doi: 10.1523/JNEUROSCI.18-09-03460.1998. [PMID: 9547253]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 278.Bahr B.A., Staubli U., Xiao P., Chun D., Ji Z.X., Esteban E.T., Lynch G. Arg-Gly-Asp-Ser-selective adhesion and the stabilization of long-term potentiation: pharmacological studies and the characterization of a candidate matrix receptor. J. Neurosci. 1997;17(4):1320–1329. doi: 10.1523/JNEUROSCI.17-04-01320.1997. [PMID: 9006975]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 279.Chun D., Gall C.M., Bi X., Lynch G. Evidence that integrins contribute to multiple stages in the consolidation of long term potentiation in rat hippocampus. Neuroscience. 2001;105(4):815–829. doi: 10.1016/s0306-4522(01)00173-7. [http://dx.doi.org/10.1016/S0306-4522(01)00173-7]. [PMID: 11530220]. [DOI] [PubMed] [Google Scholar]
- 280.Nagy V., Bozdagi O., Matynia A., Balcerzyk M., Okulski P., Dzwonek J., Costa R.M., Silva A.J., Kaczmarek L., Huntley G.W. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J. Neurosci. 2006;26(7):1923–1934. doi: 10.1523/JNEUROSCI.4359-05.2006. [http://dx.doi.org/10.1523/JNEUROSCI.4359-05.2006]. [PMID: 16481424]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 281.Duman J.G., Tzeng C.P., Tu Y.K., Munjal T., Schwechter B., Ho T.S., Tolias K.F. The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J. Neurosci. 2013;33(16):6964–6978. doi: 10.1523/JNEUROSCI.3978-12.2013. [http://dx.doi.org/10.1523/JNEUROSCI.3978-12.2013]. [PMID: 23595754]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 282.Ji R., Tian S., Lu H.J., Lu Q., Zheng Y., Wang X., Ding J., Li Q., Lu Q. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J. Immunol. 2013;191(12):6165–6177. doi: 10.4049/jimmunol.1302229. [http://dx.doi.org/10.4049/jimmunol.1302229]. [PMID: 24244024]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 283.Basso M., Bonetto V. Extracellular vesicles and a novel form of communication in the brain. Front. Neurosci. 2016;10:127. doi: 10.3389/fnins.2016.00127. [http://dx.doi.org/10.3389/fnins.2016.00127]. [PMID: 27065789]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 284.Budnik V., Ruiz-Cañada C., Wendler F. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci. 2016;17(3):160–172. doi: 10.1038/nrn.2015.29. [http://dx.doi.org/10.1038/nrn. 2015.29]. [PMID: 26891626]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 285.Nigro A., Colombo F., Casella G., Finardi A., Verderio C., Furlan R. Myeloid Extracellular Vesicles: Messengers from the Demented Brain. Front. Immunol. 2016;7:17. doi: 10.3389/fimmu.2016.00017. [http://dx.doi.org/10.3389/fimmu.2016.00017]. [PMID: 26858720]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 286.Bahrini I., Song J.H., Diez D., Hanayama R. Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci. Rep. 2015;5:7989. doi: 10.1038/srep07989. [http://dx.doi.org/10.1038/ srep07989]. [PMID: 25612542]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 287.Turola E., Furlan R., Bianco F., Matteoli M., Verderio C. Microglial microvesicle secretion and intercellular signaling. Front. Physiol. 2012;3:149. doi: 10.3389/fphys.2012.00149. [http://dx.doi.org/10.3389/fphys. 2012.00149]. [PMID: 22661954]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 288.Van Rooijen N., Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J. Immunol. Methods. 1994;174(1-2):83–93. doi: 10.1016/0022-1759(94)90012-4. [http://dx.doi.org/10.1016/0022-1759(94)90012-4]. [PMID: 8083541]. [DOI] [PubMed] [Google Scholar]
- 289.Saxena T., Loomis K.H., Pai S.B., Karumbaiah L., Gaupp E., Patil K., Patkar R., Bellamkonda R.V. Nanocarrier-mediated inhibition of macrophage migration inhibitory factor attenuates secondary injury after spinal cord injury. ACS Nano. 2015;9(2):1492–1505. doi: 10.1021/nn505980z. [http://dx.doi.org/10.1021/nn505980z]. [PMID: 25587936]. [DOI] [PubMed] [Google Scholar]
- 290.Camelo S., Lajavardi L., Bochot A., Goldenberg B., Naud M.C., Fattal E., Behar-Cohen F., de Kozak Y. Ocular and systemic bio-distribution of rhodamine-conjugated liposomes loaded with VIP injected into the vitreous of Lewis rats. Mol. Vis. 2007;13:2263–2274. [PMID: 18451986]. [PMC free article] [PubMed] [Google Scholar]
- 291.Omri S., Behar-Cohen F., de Kozak Y., Sennlaub F., Verissimo L.M., Jonet L., Savoldelli M., Omri B., Crisanti P. Microglia/ macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKCζ in the Goto Kakizaki rat model. Am. J. Pathol. 2011;179(2):942–953. doi: 10.1016/j.ajpath.2011.04.018. [http://dx.doi.org/10.1016/j.ajpath.2011.04.018]. [PMID: 21712024]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 292.Ferrer-Martín R.M., Martín-Oliva D., Sierra-Martín A., Carrasco M.C., Martín-Estebané M., Calvente R., Martín-Guerrero S.M., Marín-Teva J.L., Navascués J., Cuadros M.A. Microglial Activation Promotes Cell Survival in Organotypic Cultures of Postnatal Mouse Retinal Explants. PLoS One. 2015;10(8):e0135238. doi: 10.1371/journal.pone.0135238. [http://dx.doi.org/10.1371/journal.pone.0135238]. [PMID: 26252475]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 293.Paolino D., Iannone M., Cardile V., Renis M., Puglisi G., Rotiroti D., Fresta M. Tolerability and improved protective action of idebenone-loaded pegylated liposomes on ethanol-induced injury in primary cortical astrocytes. J. Pharm. Sci. 2004;93(7):1815–1827. doi: 10.1002/jps.20088. [http://dx.doi.org/10.1002/jps.20088]. [PMID: 15176069]. [DOI] [PubMed] [Google Scholar]
- 294.Sheehan J.P., Sheehan J.M., Holmberg E.G., Geisert E.E., Helm G.A. A horseradish peroxidase-light and electron microscopic study of immunoliposomes utilized for intracellular delivery to the rat striatum. Neurosci. Lett. 2002;333(3):212–216. doi: 10.1016/s0304-3940(02)00610-9. [http://dx.doi.org/10.1016/S0304-3940(02)00610-9]. [PMID: 12429385]. [DOI] [PubMed] [Google Scholar]
- 295.Kole L., Sakar K., Mahato S.B., Das P.K. Neoglycoprotein conjugated liposomes as macrophage specific drug carrier in the therapy of leishmaniasis. Biochem. Biophys. Res. Commun. 1994;200(1):351–358. doi: 10.1006/bbrc.1994.1455. [http://dx.doi.org/10.1006/bbrc.1994.1455]. [PMID: 8166705]. [DOI] [PubMed] [Google Scholar]
- 296.Fernández-López D., Faustino J., Klibanov A.L., Derugin N., Blanchard E., Simon F., Leib S.L., Vexler Z.S. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke. J. Neurosci. 2016;36(10):2881–2893. doi: 10.1523/JNEUROSCI.0140-15.2016. [http://dx.doi.org/10.1523/ JNEUROSCI.0140-15.2016]. [PMID: 26961944]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 297.Otsuka M., Tsuchiya S., Aramaki Y. Involvement of ERK, a MAP kinase, in the production of TGF-beta by macrophages treated with liposomes composed of phosphatidylserine. Biochem. Biophys. Res. Commun. 2004;324(4):1400–1405. doi: 10.1016/j.bbrc.2004.09.198. [http://dx.doi.org/10.1016/j.bbrc.2004.09.198]. [PMID: 15504369]. [DOI] [PubMed] [Google Scholar]
- 298.Shi D., Fu M., Fan P., Li W., Chen X., Li C., Qi X., Gao T., Liu Y. Artificial phosphatidylserine liposome mimics apoptotic cells in inhibiting maturation and immunostimulatory function of murine myeloid dendritic cells in response to 1-chloro-2,4-dinitrobenze in vitro. Arch. Dermatol. Res. 2007;299(7):327–336. doi: 10.1007/s00403-007-0770-9. [http://dx.doi.org/10.1007/s00403-007-0770-9]. [PMID: 17643252]. [DOI] [PubMed] [Google Scholar]
- 299.Wiley N.J., Madhankumar A.B., Mitchell R.M., Neely E.B., Rizk E., Douds G.L., Simmons Z., Connor J.R. Lipopolysaccharide modified liposomes for amyotropic lateral sclerosis therapy: Efficacy in SOD1 Mouse Model. Advances in Nanoparticles. 2012;1:44–53. [http://dx.doi.org/10.4236/anp.2012. 13007]. [Google Scholar]
- 300.Koning G.A., Schiffelers R.M., Storm G. Endothelial cells at inflammatory sites as target for therapeutic intervention. Endothelium. 2002;9(3):161–171. doi: 10.1080/10623320213631. [http://dx.doi.org/10.1080/ 10623320213631]. [PMID: 12380641]. [DOI] [PubMed] [Google Scholar]
- 301.Jain S., Mishra V., Singh P., Dubey P.K., Saraf D.K., Vyas S.P. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int. J. Pharm. 2003;261(1-2):43–55. doi: 10.1016/s0378-5173(03)00269-2. [http://dx.doi.org/10.1016/S0378-5173(03)00269-2]. [PMID: 12878394]. [DOI] [PubMed] [Google Scholar]
- 302.Chono S., Tauchi Y., Deguchi Y., Morimoto K. Efficient drug delivery to atherosclerotic lesions and the antiatherosclerotic effect by dexamethasone incorporated into liposomes in atherogenic mice. J. Drug Target. 2005;13(4):267–276. doi: 10.1080/10611860500159030. [http://dx.doi.org/10. 1080/10611860500159030]. [PMID: 16051539]. [DOI] [PubMed] [Google Scholar]
- 303.Homem de Bittencourt P.I., Jr, Lagranha D.J., Maslinkiewicz A., Senna S.M., Tavares A.M., Baldissera L.P., Janner D.R., Peralta J.S., Bock P.M., Gutierrez L.L., Scola G., Heck T.G., Krause M.S., Cruz L.A., Abdalla D.S., Lagranha C.J., Lima T., Curi R. LipoCardium: endothelium-directed cyclopentenone prostaglandin-based liposome formulation that completely reverses atherosclerotic lesions. Atherosclerosis. 2007;193(2):245–258. doi: 10.1016/j.atherosclerosis.2006.08.049. [http://dx.doi.org/10.1016/j.atherosclerosis.2006.08.049]. [PMID: 16996518]. [DOI] [PubMed] [Google Scholar]
- 304.Chan P.H., Longar S., Fishman R.A. Protective effects of liposome-entrapped superoxide dismutase on posttraumatic brain edema. Ann. Neurol. 1987;21(6):540–547. doi: 10.1002/ana.410210604. [http://dx.doi.org/10.1002/ana.410210604]. [PMID: 3037989]. [DOI] [PubMed] [Google Scholar]
- 305.Imaizumi S., Woolworth V., Fishman R.A., Chan P.H. Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats. Stroke. 1990;21(9):1312–1317. doi: 10.1161/01.str.21.9.1312. [http://dx.doi.org/10.1161/01.STR.21.9.1312]. [PMID: 2396268]. [DOI] [PubMed] [Google Scholar]
- 306.Niesman M.R., Johnson K.A., Penn J.S. Therapeutic effect of liposomal superoxide dismutase in an animal model of retinopathy of prematurity. Neurochem. Res. 1997;22(5):597–605. doi: 10.1023/a:1022474120512. [http://dx.doi.org/10.1023/A:1022474120512]. [PMID: 9131639]. [DOI] [PubMed] [Google Scholar]
- 307.Chen D., Li Q.T., Lee K.H. Antinociceptive activity of liposome-entrapped calcitonin by systemic administration in mice. Brain Res. 1993;603(1):139–142. doi: 10.1016/0006-8993(93)91311-f. [http://dx.doi.org/10.1016/0006-8993(93)91311-F]. [PMID: 8453470]. [DOI] [PubMed] [Google Scholar]
- 308.Pujol-Autonell I., Serracant-Prat A., Cano-Sarabia M., Ampudia R.M., Rodriguez-Fernandez S., Sanchez A., Izquierdo C., Stratmann T., Puig-Domingo M., Maspoch D., Verdaguer J., Vives-Pi M. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes. PLoS One. 2015;10(6):e0127057. doi: 10.1371/journal.pone.0127057. [http://dx.doi.org/10.1371/journal.pone. 0127057]. [PMID: 26039878]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 309.Oussoren C., Magnani M., Fraternale A., Casabianca A., Chiarantini L., Ingebrigsten R., Underberg W.J., Storm G. Liposomes as carriers of the antiretroviral agent dideoxycytidine-5-triphosphate. Int. J. Pharm. 1999;180(2):261–270. doi: 10.1016/s0378-5173(99)00016-2. [http://dx.doi.org/10.1016/S0378-5173(99)00016-2]. [PMID: 10370196]. [DOI] [PubMed] [Google Scholar]
- 310.Gibbons A.M., McElvaney N.G., Taggart C.C., Cryan S.A. Delivery of rSLPI in a liposomal carrier for inhalation provides protection against cathepsin L degradation. J. Microencapsul. 2009;26(6):513–522. doi: 10.1080/02652040802466535. [http://dx.doi.org/10.1080/02652040802466535]. [PMID: 18925490]. [DOI] [PubMed] [Google Scholar]
- 311.Zhou X., Luo Y.C., Ji W.J., Zhang L., Dong Y., Ge L., Lu R.Y., Sun H.Y., Guo Z.Z., Yang G.H., Jiang T.M., Li Y.M. Modulation of mononuclear phagocyte inflammatory response by liposome-encapsulated voltage gated sodium channel inhibitor ameliorates myocardial ischemia/reperfusion injury in rats. PLoS One. 2013;8(9):e74390. doi: 10.1371/journal.pone.0074390. [http://dx.doi.org/10.1371/journal.pone. 0074390]. [PMID: 24069305]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 312.Salem I.I., Düzgünes N. Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages. Int. J. Pharm. 2003;250(2):403–414. doi: 10.1016/s0378-5173(02)00552-5. [http://dx.doi.org/10.1016/S0378-5173(02) 00552-5]. [PMID: 12527166]. [DOI] [PubMed] [Google Scholar]
- 313.Vyas S.P., Kannan M.E., Jain S., Mishra V., Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharm. 2004;269(1):37–49. doi: 10.1016/j.ijpharm.2003.08.017. [http://dx.doi.org/10.1016/j.ijpharm.2003.08.017]. [PMID: 14698575]. [DOI] [PubMed] [Google Scholar]
- 314.Nathiya S., Durga M., Devasena T. Quercetin, Encapsulated Quercetin and Its Application- A Review. Int. J. Pharm. Pharm.Sci. 2014;6(10) [Google Scholar]
- 315.Wasan E.K., Fairchild A., Bally M.B. Cationic liposomeplasmid DNA complexes used for gene transfer retain a significant trapped volume. J. Pharm. Sci. 1998;87(1):9–14. doi: 10.1021/js970265k. [http://dx.doi.org/10.1021/js970265k]. [PMID: 9452961]. [DOI] [PubMed] [Google Scholar]
- 316.Kakehata J., Yamaguchi T., Togashi H., Sakuma I., Otani H., Morimoto Y., Yoshioka M. Therapeutic potentials of an artificial oxygen-carrier, liposome-encapsulated hemoglobin, for ischemia/reperfusion-induced cerebral dysfunction in rats. J. Pharmacol. Sci. 2010;114(2):189–197. doi: 10.1254/jphs.10115fp. [http://dx.doi.org/10.1254/ jphs.10115FP]. [PMID: 20838027]. [DOI] [PubMed] [Google Scholar]
- 317.Wieghofer P., Knobeloch K.P., Prinz M. Genetic targeting of microglia. Glia. 2015;63(1):1–22. doi: 10.1002/glia.22727. [http://dx.doi.org/10.1002/ glia.22727]. [PMID: 25132502]. [DOI] [PubMed] [Google Scholar]
- 318.Mitrasinovic O.M., Grattan A., Robinson C.C., Lapustea N.B., Poon C., Ryan H., Phong C., Murphy G.M., Jr Microglia overexpressing the macrophage colony-stimulating factor receptor are neuroprotective in a microglial-hippocampal organotypic coculture system. J. Neurosci. 2005;25(17):4442–4451. doi: 10.1523/JNEUROSCI.0514-05.2005. [http://dx.doi.org/10.1523/JNEUROSCI.0514-05.2005]. [PMID: 15858070]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 319.Chu Y.X., Zhang Y., Zhang Y.Q., Zhao Z.Q. Involvement of microglial P2X7 receptors and downstream signaling pathways in long-term potentiation of spinal nociceptive responses. Brain Behav. Immun. 2010;24(7):1176–1189. doi: 10.1016/j.bbi.2010.06.001. [http://dx.doi.org/10.1016/ j.bbi.2010.06.001]. [PMID: 20554014]. [DOI] [PubMed] [Google Scholar]
- 320.Su W., Kang J., Sopher B., Gillespie J., Aloi M.S., Odom G.L., Hopkins S., Case A., Wang D.B., Chamberlain J.S., Garden G.A. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia. J. Neurochem. 2016;136(Suppl. 1):49–62. doi: 10.1111/jnc.13081. [http://dx.doi.org/10.1111/jnc.13081]. [PMID: 25708596]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 321.Cucchiarini M., Ren X.L., Perides G., Terwilliger E.F. Selective gene expression in brain microglia mediated via adeno-associated virus type 2 and type 5 vectors. Gene Ther. 2003;10(8):657–667. doi: 10.1038/sj.gt.3301925. [http://dx.doi.org/10.1038/sj.gt.3301925]. [PMID: 12692594]. [DOI] [PubMed] [Google Scholar]
- 322.Lungwitz U., Breunig M., Blunk T., Göpferich A. Poly- ethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 2005;60(2):247–266. doi: 10.1016/j.ejpb.2004.11.011. [http://dx.doi.org/10. 1016/j.ejpb.2004.11.011]. [PMID: 15939236]. [DOI] [PubMed] [Google Scholar]
- 323.Aschauer D.F., Kreuz S., Rumpel S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One. 2013;8(9):e76310. doi: 10.1371/journal.pone.0076310. [http://dx.doi.org/10.1371/journal.pone.0076310]. [PMID: 24086725]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 324.Roumier A., Béchade C., Poncer J.C., Smalla K.H., Tomasello E., Vivier E., Gundelfinger E.D., Triller A., Bessis A. Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J. Neurosci. 2004;24(50):11421–11428. doi: 10.1523/JNEUROSCI.2251-04.2004. [http://dx.doi.org/10.1523/JNEUROSCI.2251-04.2004]. [PMID: 15601948]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 325.Origlia N., Criscuolo C., Arancio O., Yan S.S., Domenici L. RAGE inhibition in microglia prevents ischemia-dependent synaptic dysfunction in an amyloid-enriched environment. J. Neurosci. 2014;34(26):8749–8760. doi: 10.1523/JNEUROSCI.0141-14.2014. [http://dx.doi.org/10.1523/JNEUROSCI.0141-14.2014]. [PMID: 24966375]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 326.Vergara-Castañeda H., Hernandez-Martinez A.R., Estevez M., Mendoza S., Luna-Barcenas G., Pool H. Quercetin conjugated silica particles as novel biofunctional hybrid materials for biological applications. J. Colloid Interface Sci. 2016;466:44–55. doi: 10.1016/j.jcis.2015.12.011. [http://dx.doi.org/10.1016/j.jcis.2015.12.011]. [PMID: 26704475]. [DOI] [PubMed] [Google Scholar]
- 327.Papa S., Rossi F., Ferrari R., Mariani A., De Paola M., Caron I., Fiordaliso F., Bisighini C., Sammali E., Colombo C., Gobbi M., Canovi M., Lucchetti J., Peviani M., Morbidelli M., Forloni G., Perale G., Moscatelli D., Veglianese P. Selective nanovector mediated treatment of activated proinflammatory microglia/ macrophages in spinal cord injury. ACS Nano. 2013;7(11):9881–9895. doi: 10.1021/nn4036014. [http://dx.doi.org/10.1021/nn4036014]. [PMID: 24138479]. [DOI] [PubMed] [Google Scholar]
- 328.Cerqueira S.R., Oliveira J.M., Silva N.A., Leite-Almeida H., Ribeiro-Samy S., Almeida A., Mano J.F., Sousa N., Salgado A.J., Reis R.L. Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. Small. 2013;9(5):738–749. doi: 10.1002/smll.201201888. [http://dx.doi.org/10.1002/smll.201201888]. [PMID: 23161735]. [DOI] [PubMed] [Google Scholar]
- 329.Minami S.S., Sun B., Popat K., Kauppinen T., Pleiss M., Zhou Y., Ward M.E., Floreancig P., Mucke L., Desai T., Gan L. Selective targeting of microglia by quantum dots. J. Neuroinflammation. 2012;9:22. doi: 10.1186/1742-2094-9-22. [http://dx.doi.org/10.1186/1742-2094-9-22]. [PMID: 22272874]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 330.Portnoy E., Polyak B., Inbar D., Kenan G., Rai A., Wehrli S.L., Roberts T.P., Bishara A., Mann A., Shmuel M., Rozovsky K., Itzhak G., Ben-Hur T., Magdassi S., Ekstein D., Eyal S. Tracking inflammation in the epileptic rat brain by bi-functional fluorescent and magnetic nanoparticles. Nanomedicine (Lond.) 2016;12(5):1335–1345. doi: 10.1016/j.nano.2016.01.018. [PMID: 26964483]. [DOI] [PubMed] [Google Scholar]
- 331.Valenza M., Chen J.Y., Di Paolo E., Ruozi B., Belletti D., Ferrari Bardile C., Leoni V., Caccia C., Brilli E., Di Donato S., Boido M.M., Vercelli A., Vandelli M.A., Forni F., Cepeda C., Levine M.S., Tosi G., Cattaneo E. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntingtons disease mice. EMBO Mol. Med. 2015;7(12):1547–1564. doi: 10.15252/emmm.201505413. [http://dx.doi.org/10.15252/emmm.201505413]. [PMID: 26589247]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 332.Huang C.L., Hsiao I.L., Lin H.C., Wang C.F., Huang Y.J., Chuang C.Y. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ. Res. 2015;136:253–263. doi: 10.1016/j.envres.2014.11.006. [http://dx.doi.org/10.1016/j.envres.2014.11.006]. [PMID: 25460644]. [DOI] [PubMed] [Google Scholar]
- 333.Long T.C., Saleh N., Tilton R.D., Lowry G.V., Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ. Sci. Technol. 2006;40(14):4346–4352. doi: 10.1021/es060589n. [http://dx.doi.org/10.1021/es060589n]. [PMID: 16903269]. [DOI] [PubMed] [Google Scholar]
- 334.Long T.C., Tajuba J., Sama P., Saleh N., Swartz C., Parker J., Hester S., Lowry G.V., Veronesi B. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ. Health Perspect. 2007;115(11):1631–1637. doi: 10.1289/ehp.10216. [http://dx.doi.org/10.1289/ehp.10216]. [PMID: 18007996]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 335.Xue Y., Wu J., Sun J. Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol. Lett. 2012;214(2):91–98. doi: 10.1016/j.toxlet.2012.08.009. [http://dx.doi.org/10.1016/j.toxlet.2012.08.009]. [PMID: 22939914]. [DOI] [PubMed] [Google Scholar]
- 336.Liu S., Xu L., Zhang T., Ren G., Yang Z. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology. 2010;267(1-3):172–177. doi: 10.1016/j.tox.2009.11.012. [http://dx.doi.org/10.1016/ j.tox.2009.11.012]. [PMID: 19922763]. [DOI] [PubMed] [Google Scholar]
- 337.Liu Z., Zhang T., Ren G., Yang Z. Nano-Ag inhibiting action potential independent glutamatergic synaptic transmission but increasing excitability in rat CA1 pyramidal neurons. Nanotoxicology. 2012;6(4):414–423. doi: 10.3109/17435390.2011.583996. [http://dx.doi.org/10.3109/ 17435390.2011.583996]. [PMID: 21627402]. [DOI] [PubMed] [Google Scholar]
- 338.Jung S., Bang M., Kim B.S., Lee S., Kotov N.A., Kim B., Jeon D. Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. PLoS One. 2014;9(3):e91360. doi: 10.1371/journal.pone.0091360. [http://dx.doi.org/10.1371/journal.pone.0091360]. [PMID: 24625829]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 339.Rosillo-de la Torre A., Zurita-Olvera L., Orozco-Suárez S., Garcia Casillas P.E., Salgado-Ceballos H., Luna-Bárcenas G., Rocha L. Phenytoin carried by silica core iron oxide nanoparticles reduces the expression of pharmacoresistant seizures in rats. Nanomedicine (Lond.) 2015;10(24):3563–3577. doi: 10.2217/nnm.15.173. [http://dx.doi.org/10.2217/nnm.15.173]. [PMID: 26649451]. [DOI] [PubMed] [Google Scholar]
- 340.Xie Y., Wang Y., Zhang T., Ren G., Yang Z. Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J. Biomed. Sci. 2012;19:14. doi: 10.1186/1423-0127-19-14. [http://dx.doi.org/10.1186/1423-0127-19-14]. [PMID: 22300475]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 341.Anderson A.C., Anderson D.E., Bregoli L., Hastings W.D., Kassam N., Lei C., Chandwaskar R., Karman J., Su E.W., Hirashima M., Bruce J.N., Kane L.P., Kuchroo V.K., Hafler D.A. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science. 2007;318(5853):1141–1143. doi: 10.1126/science.1148536. [http://dx.doi.org/10.1126/science.1148536]. [PMID: 18006747]. [DOI] [PubMed] [Google Scholar]
- 342.Steelman A.J., Li J. Astrocyte galectin-9 potentiates microglial TNF secretion. J. Neuroinflammation. 2014;11:144. doi: 10.1186/s12974-014-0144-0. [http://dx.doi.org/10.1186/s12974-014-0144-0]. [PMID: 25158758]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 343.Lee S.Y., Goverman J.M. The influence of T cell Ig mucin-3 signaling on central nervous system autoimmune disease is determined by the effector function of the pathogenic T cells. J. Immunol. 2013;190(10):4991–4999. doi: 10.4049/jimmunol.1300083. [http://dx.doi.org/10.4049/ jimmunol.1300083]. [PMID: 23562810]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 344.Xu C., Wang T., Cheng S., Liu Y. Increased expression of T cell immunoglobulin and mucin domain 3 aggravates brain inflammation via regulation of the function of microglia/macrophages after intracerebral hemorrhage in mice. J. Neuroinflammation. 2013;10:141. doi: 10.1186/1742-2094-10-141. [http://dx.doi.org/10.1186/1742-2094-10-141]. [PMID: 24289479]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 345.Wang H.W., Zhu X.L., Qin L.M., Qian H.J., Wang Y. Microglia activity modulated by T cell Ig and mucin domain protein 3 (Tim-3). Cell. Immunol. 2015;293(1):49–58. doi: 10.1016/j.cellimm.2014.12.005. [http://dx.doi.org/10.1016/j.cellimm.2014.12.005]. [PMID: 25557503]. [DOI] [PubMed] [Google Scholar]
- 346.Koh H.S., Chang C.Y., Jeon S.B., Yoon H.J., Ahn Y.H., Kim H.S., Kim I.H., Jeon S.H., Johnson R.S., Park E.J. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat. Commun. 2015;6:6340. doi: 10.1038/ncomms7340. [http://dx.doi.org/10.1038/ncomms7340]. [PMID: 25790768]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 347.Asakura H., Kashio Y., Nakamura K., Seki M., Dai S., Shirato Y., Abedin M.J., Yoshida N., Nishi N., Imaizumi T., Saita N., Toyama Y., Takashima H., Nakamura T., Ohkawa M., Hirashima M. Selective eosinophil adhesion to fibroblast via IFN-gamma-induced galectin-9. J. Immunol. 2002;169(10):5912–5918. doi: 10.4049/jimmunol.169.10.5912. [http://dx.doi.org/10.4049/jimmunol.169.10.5912]. [PMID: 12421975]. [DOI] [PubMed] [Google Scholar]
- 348.Yoshida H., Imaizumi T., Kumagai M., Kimura K., Satoh C., Hanada N., Fujimoto K., Nishi N., Tanji K., Matsumiya T., Mori F., Cui X.F., Tamo W., Shibata T., Takanashi S., Okumura K., Nakamura T., Wakabayashi K., Hirashima M., Sato Y., Satoh K. Interleukin-1beta stimulates galectin-9 expression in human astrocytes. Neuroreport. 2001;12(17):3755–3758. doi: 10.1097/00001756-200112040-00030. [http://dx.doi.org/10.1097/00001756-200112040-00030]. [PMID: 11726788]. [DOI] [PubMed] [Google Scholar]
- 349.Vaitaitis G.M., Wagner D.H., Jr Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity. PLoS One. 2012;7(6):e38708. doi: 10.1371/journal.pone.0038708. [http://dx.doi.org/10.1371/journal.pone. 0038708]. [PMID: 22685601]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 350.Cummings R.D. T cells are Smadly in love with galectin-9. Immunity. 2014;41(2):171–173. doi: 10.1016/j.immuni.2014.08.001. [http://dx.doi.org/10.1016/ j.immuni.2014.08.001]. [PMID: 25148018]. [DOI] [PubMed] [Google Scholar]
- 351.Wu C., Thalhamer T., Franca R.F., Xiao S., Wang C., Hotta C., Zhu C., Hirashima M., Anderson A.C., Kuchroo V.K. Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity. 2014;41(2):270–282. doi: 10.1016/j.immuni.2014.06.011. [http://dx.doi.org/10.1016/j.immuni.2014.06.011]. [PMID: 25065622]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 352.Walter J. The Triggering Receptor Expressed on Myeloid Cells 2: A Molecular Link of Neuroinflammation and Neurodegenerative Diseases. J. Biol. Chem. 2016;291(9):4334–4341. doi: 10.1074/jbc.R115.704981. [http://dx.doi.org/10.1074/jbc.R115.704981]. [PMID: 26694609]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 353.Guerreiro R., Wojtas A., Bras J., Carrasquillo M., Rogaeva E., Majounie E., Cruchaga C., Sassi C., Kauwe J.S., Younkin S., Hazrati L., Collinge J., Pocock J., Lashley T., Williams J., Lambert J.C., Amouyel P., Goate A., Rademakers R., Morgan K., Powell J., St George-Hyslop P., Singleton A., Hardy J. TREM2 variants in Alzheimers disease. N. Engl. J. Med. 2013;368(2):117–127. doi: 10.1056/NEJMoa1211851. [http://dx.doi.org/10.1056/NEJMoa1211851]. [PMID: 23150934]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 354.Jonsson T., Stefansson H., Steinberg S., Jonsdottir I., Jonsson P.V., Snaedal J., Bjornsson S., Huttenlocher J., Levey A.I., Lah J.J., Rujescu D., Hampel H., Giegling I., Andreassen O.A., Engedal K., Ulstein I., Djurovic S., Ibrahim-Verbaas C., Hofman A., Ikram M.A., van Duijn C.M., Thorsteinsdottir U., Kong A., Stefansson K. Variant of TREM2 associated with the risk of Alzheimers disease. N. Engl. J. Med. 2013;368(2):107–116. doi: 10.1056/NEJMoa1211103. [http://dx.doi.org/10.1056/NEJMoa1211103]. [PMID: 23150908]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 355.Kiialainen A., Hovanes K., Paloneva J., Kopra O., Peltonen L. Dap12 and Trem2, molecules involved in innate immunity and neurodegeneration, are co-expressed in the CNS. Neurobiol. Dis. 2005;18(2):314–322. doi: 10.1016/j.nbd.2004.09.007. [http://dx.doi.org/10.1016/j.nbd.2004.09.007]. [PMID: 15686960]. [DOI] [PubMed] [Google Scholar]
- 356.Schluesener H.J., Seid K., Deininger M., Schwab J., Hasel K.W., Hilbush B.S., Schluesener H.J., Seid K., Deininger M., Schwab J. Transient in vivo activation of rat brain macrophages/ microglial cells and astrocytes by immunostimulatory multiple CpG oligonucleotides. J. Neuroimmunol. 2001;113(1):89–94. doi: 10.1016/s0165-5728(00)00428-8. [http://dx.doi.org/10.1016/S0165-5728(00)00428-8]. [PMID: 11137580]. [DOI] [PubMed] [Google Scholar]
- 357.Sessa G., Podini P., Mariani M., Meroni A., Spreafico R., Sinigaglia F., Colonna M., Panina P., Meldolesi J. Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur. J. Neurosci. 2004;20(10):2617–2628. doi: 10.1111/j.1460-9568.2004.03729.x. [http://dx.doi.org/10.1111/j.1460-9568.2004.03729.x]. [PMID: 15548205]. [DOI] [PubMed] [Google Scholar]
- 358.Thrash J.C., Torbett B.E., Carson M.J. Developmental regulation of TREM2 and DAP12 expression in the murine CNS: implications for Nasu-Hakola disease. Neurochem. Res. 2009;34(1):38–45. doi: 10.1007/s11064-008-9657-1. [http://dx.doi.org/10.1007/s11064-008-9657-1]. [PMID: 18404378]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 359.Hsieh C.L., Koike M., Spusta S.C., Niemi E.C., Yenari M., Nakamura M.C., Seaman W.E. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J. Neurochem. 2009;109(4):1144–1156. doi: 10.1111/j.1471-4159.2009.06042.x. [http://dx.doi.org/10.1111/ j.1471-4159.2009.06042.x]. [PMID: 19302484]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 360.Chertoff M., Shrivastava K., Gonzalez B., Acarin L., Giménez-Llort L. Differential modulation of TREM2 protein during postnatal brain development in mice. PLoS One. 2013;8(8):e72083. doi: 10.1371/journal.pone.0072083. [http://dx.doi.org/10.1371/journal.pone.0072083]. [PMID: 23977213]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 361.Lue L.F., Schmitz C.T., Serrano G., Sue L.I., Beach T.G., Walker D.G. TREM2 Protein Expression Changes Correlate with Alzheimers Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices. Brain Pathol. 2015;25(4):469–480. doi: 10.1111/bpa.12190. [http://dx.doi.org/10.1111/bpa.12190]. [PMID: 25186950]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 362.Kaifu T., Nakahara J., Inui M., Mishima K., Momiyama T., Kaji M., Sugahara A., Koito H., Ujike-Asai A., Nakamura A., Kanazawa K., Tan-Takeuchi K., Iwasaki K., Yokoyama W.M., Kudo A., Fujiwara M., Asou H., Takai T. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J. Clin. Invest. 2003;111(3):323–332. doi: 10.1172/JCI16923. [http://dx.doi.org/10.1172/JCI16923]. [PMID: 12569157]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 363.Stefano L., Racchetti G., Bianco F., Passini N., Gupta R.S., Panina Bordignon P., Meldolesi J. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J. Neurochem. 2009;110(1):284–294. doi: 10.1111/j.1471-4159.2009.06130.x. [http://dx.doi.org/10.1111/ j.1471-4159.2009.06130.x]. [PMID: 19457124]. [DOI] [PubMed] [Google Scholar]
- 364.Cannon J.P., ODriscoll M., Litman G.W. Specific lipid recognition is a general feature of CD300 and TREM molecules. Immunogenetics. 2012;64(1):39–47. doi: 10.1007/s00251-011-0562-4. [http://dx.doi.org/10. 1007/s00251-011-0562-4]. [PMID: 21800138]. [DOI] [PubMed] [Google Scholar]
- 365.Daws M.R., Sullam P.M., Niemi E.C., Chen T.T., Tchao N.K., Seaman W.E. Pattern recognition by TREM-2: binding of anionic ligands. J. Immunol. 2003;171(2):594–599. doi: 10.4049/jimmunol.171.2.594. [http://dx.doi.org/10.4049/jimmunol.171.2.594]. [PMID: 12847223]. [DOI] [PubMed] [Google Scholar]
- 366.Colonna M. TREMs in the immune system and beyond. Nat. Rev. Immunol. 2003;3(6):445–453. doi: 10.1038/nri1106. [http://dx.doi.org/10.1038/nri1106]. [PMID: 12776204]. [DOI] [PubMed] [Google Scholar]
- 367.Piccio L., Buonsanti C., Mariani M., Cella M., Gilfillan S., Cross A.H., Colonna M., Panina-Bordignon P. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur. J. Immunol. 2007;37(5):1290–1301. doi: 10.1002/eji.200636837. [http://dx.doi.org/10. 1002/eji.200636837]. [PMID: 17407101]. [DOI] [PubMed] [Google Scholar]
- 368.Roumier A., Pascual O., Béchade C., Wakselman S., Poncer J.C., Réal E., Triller A., Bessis A. Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS One. 2008;3(7):e2595. doi: 10.1371/journal.pone.0002595. [http://dx.doi.org/10.1371/ journal.pone.0002595]. [PMID: 18612411]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 369.Barclay A.N., Wright G.J., Brooke G., Brown M.H. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 2002;23(6):285–290. doi: 10.1016/s1471-4906(02)02223-8. [http://dx.doi.org/10.1016/S1471-4906(02)02223-8]. [PMID: 12072366]. [DOI] [PubMed] [Google Scholar]
- 370.Koning N., Bö L., Hoek R.M., Huitinga I. Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann. Neurol. 2007;62(5):504–514. doi: 10.1002/ana.21220. [http://dx.doi.org/10.1002/ana.21220]. [PMID: 17879969]. [DOI] [PubMed] [Google Scholar]
- 371.Lyons A., Downer E.J., Crotty S., Nolan Y.M., Mills K.H., Lynch M.A. CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J. Neurosci. 2007;27(31):8309–8313. doi: 10.1523/JNEUROSCI.1781-07.2007. [http://dx.doi.org/10.1523/ JNEUROSCI.1781-07.2007]. [PMID: 17670977]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 372.Shrivastava K., Gonzalez P., Acarin L. The immune inhibitory complex CD200/CD200R is developmentally regulated in the mouse brain. J. Comp. Neurol. 2012;520(12):2657–2675. doi: 10.1002/cne.23062. [http://dx.doi.org/10.1002/cne.23062]. [PMID: 22323214]. [DOI] [PubMed] [Google Scholar]
- 373.Chitnis T., Imitola J., Wang Y., Elyaman W., Chawla P., Sharuk M., Raddassi K., Bronson R.T., Khoury S.J. Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. Am. J. Pathol. 2007;170(5):1695–1712. doi: 10.2353/ajpath.2007.060677. [http://dx.doi.org/10.2353/ajpath.2007.060677]. [PMID: 17456775]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 374.Ojo B., Rezaie P., Gabbott P.L., Davies H., Colyer F., Cowley T.R., Lynch M., Stewart M.G. Age-related changes in the hippocampus (loss of synaptophysin and glial-synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain Behav. Immun. 2012;26(5):778–788. doi: 10.1016/j.bbi.2011.09.013. [http://dx.doi.org/10.1016/j.bbi.2011.09.013]. [PMID: 21986303]. [DOI] [PubMed] [Google Scholar]
- 375.Copland D.A., Calder C.J., Raveney B.J., Nicholson L.B., Phillips J., Cherwinski H., Jenmalm M., Sedgwick J.D., Dick A.D. Monoclonal antibody-mediated CD200 receptor signaling suppresses macrophage activation and tissue damage in experimental autoimmune uveoretinitis. Am. J. Pathol. 2007;171(2):580–588. doi: 10.2353/ajpath.2007.070272. [http://dx.doi.org/10.2353/ajpath.2007.070272]. [PMID: 17600119]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 376.Hoek R.M., Ruuls S.R., Murphy C.A., Wright G.J., Goddard R., Zurawski S.M., Blom B., Homola M.E., Streit W.J., Brown M.H., Barclay A.N., Sedgwick J.D. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science. 2000;290(5497):1768–1771. doi: 10.1126/science.290.5497.1768. [http://dx.doi.org/10.1126/ science.290.5497.1768]. [PMID: 11099416]. [DOI] [PubMed] [Google Scholar]
- 377.Cox F.F., Carney D., Miller A.M., Lynch M.A. CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav. Immun. 2012;26(5):789–796. doi: 10.1016/j.bbi.2011.10.004. [http://dx.doi.org/10.1016/j.bbi.2011.10.004]. [PMID: 22041297]. [DOI] [PubMed] [Google Scholar]
- 378.Choi J.W., Herr D.R., Noguchi K., Yung Y.C., Lee C.W., Mutoh T., Lin M.E., Teo S.T., Park K.E., Mosley A.N., Chun J. LPA receptors: subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol. 2010;50:157–186. doi: 10.1146/annurev.pharmtox.010909.105753. [http://dx.doi.org/10.1146/ annurev.pharmtox.010909.105753]. [PMID: 20055701]. [DOI] [PubMed] [Google Scholar]
- 379.Santos-Nogueira E., López-Serrano C., Hernández J., Lago N., Astudillo A.M., Balsinde J., Estivill-Torrús G., de Fonseca F.R., Chun J., López-Vales R. Activation of Lysophosphatidic Acid Receptor Type 1 Contributes to Pathophysiology of Spinal Cord Injury. J. Neurosci. 2015;35(28):10224–10235. doi: 10.1523/JNEUROSCI.4703-14.2015. [http://dx.doi.org/10.1523/JNEUROSCI.4703-14.2015]. [PMID: 26180199]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 380.Von Haeften E., Joho S., Czechtizky W., Roux P., Evers A., Nazare M., Anumala U.R., Kozian D.H. Modulation of hexadecyl-LPA-mediated activation of mast cells and microglia by a chemical probe of LPA5. ChemBioChem. 2016;17:861–865. doi: 10.1002/cbic.201500559. [DOI] [PubMed] [Google Scholar]
- 381.Shano S., Hatanaka K., Ninose S., Moriyama R., Tsujiuchi T. A lysophosphatidic acid receptor lacking the PDZbinding domain is constitutively active and stimulates cell proliferation. Biochim. Biophys. Acta. 2008:748–759. doi: 10.1016/j.bbamcr.2007.11.013. [DOI] [PubMed] [Google Scholar]
- 382.Spohr T.C., Choi J.W., Gardell S.E., Herr D.R., Rehen S.K., Gomes F.C., Chun J. Lysophosphatidic acid receptor-dependent secondary effects via astrocytes promote neuronal differentiation. J. Biol. Chem. 2008;283(12):7470–7479. doi: 10.1074/jbc.M707758200. [http://dx.doi.org/10. 1074/jbc.M707758200]. [PMID: 18198181]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 383.Poole D.P., Lee M., Tso P., Bunnett N.W., Yo S.J., Lieu T., Shiu A., Wang J.C., Nomura D.K., Aponte G.W. Feeding-dependent activation of enteric cells and sensory neurons by lymphatic fluid: evidence for a neurolymphocrine system. Am. J. Physiol. Gastrointest. Liver Physiol. 2014;306(8):G686–G698. doi: 10.1152/ajpgi.00433.2013. [http://dx.doi.org/10.1152/ajpgi.00433.2013]. [PMID: 24578341]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 384.Williams J.R., Khandoga A.L., Goyal P., Fells J.I., Perygin D.H., Siess W., Parrill A.L., Tigyi G., Fujiwara Y. Unique ligand selectivity of the GPR92/LPA5 lysophosphatidate receptor indicates role in human platelet activation. J. Biol. Chem. 2009;284(25):17304–17319. doi: 10.1074/jbc.M109.003194. [http://dx.doi.org/10.1074/jbc.M109.003194]. [PMID: 19366702]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 385.Jiang G., Inoue A., Aoki J., Prestwich G.D. Phosphorothioate analogs of sn-2 radyl lysophosphatidic acid (LPA): metabolically stabilized LPA receptor agonists. Bioorg. Med. Chem. Lett. 2013;23(6):1865–1869. doi: 10.1016/j.bmcl.2013.01.002. [http://dx.doi.org/10.1016/j.bmcl.2013.01.002]. [PMID: 23395664]. [DOI] [PubMed] [Google Scholar]
- 386.Kozian D.H., Evers A., Florian P., Wonerow P., Joho S., Nazare M. Selective non-lipid modulator of LPA5 activity in human platelets. Bioorg. Med. Chem. Lett. 2012;22(16):5239–5243. doi: 10.1016/j.bmcl.2012.06.057. [http://dx.doi.org/10.1016/j.bmcl.2012.06.057]. [PMID: 22801643]. [DOI] [PubMed] [Google Scholar]
- 387.Thomassen E., Renshaw B.R., Sims J.E. Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily. Cytokine. 1999;11(6):389–399. doi: 10.1006/cyto.1998.0452. [http://dx.doi.org/10.1006/cyto.1998.0452]. [PMID: 10346978]. [DOI] [PubMed] [Google Scholar]
- 388.Garlanda C., Anders H.J., Mantovani A. TIR8/SIGIRR: an IL-1R/TLR family member with regulatory functions in inflammation and T cell polarization. Trends Immunol. 2009;30(9):439–446. doi: 10.1016/j.it.2009.06.001. [http://dx.doi.org/10.1016/j.it.2009.06.001]. [PMID: 19699681]. [DOI] [PubMed] [Google Scholar]
- 389.Riva F., Bonavita E., Barbati E., Muzio M., Mantovani A., Garlanda C. TIR8/SIGIRR is an Interleukin-1 Receptor/Toll Like Receptor Family Member with Regulatory Functions in Inflammation and Immunity. Front. Immunol. 2012;3:322. doi: 10.3389/fimmu.2012.00322. [http://dx.doi.org/10.3389/fimmu.2012.00322]. [PMID: 23112799]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 390.Qin J., Qian Y., Yao J., Grace C., Li X. SIGIRR inhibits interleukin-1 receptor- and toll-like receptor 4-mediated signaling through different mechanisms. J. Biol. Chem. 2005;280(26):25233–25241. doi: 10.1074/jbc.M501363200. [http://dx.doi.org/10.1074/jbc.M501363200]. [PMID: 15866876]. [DOI] [PubMed] [Google Scholar]
- 391.Watson M.B., Costello D.A., Carney D.G., McQuillan K., Lynch M.A. SIGIRR modulates the inflammatory response in the brain. Brain Behav. Immun. 2010;24(6):985–995. doi: 10.1016/j.bbi.2010.04.002. [http://dx. doi.org/10.1016/j.bbi.2010.04.002]. [PMID: 20394816]. [DOI] [PubMed] [Google Scholar]
- 392.Costello D.A., Watson M.B., Cowley T.R., Murphy N., Murphy Royal C., Garlanda C., Lynch M.A. Interleukin-1alpha and HMGB1 mediate hippocampal dysfunction in SIGIRR-deficient mice. J. Neurosci. 2011;31(10):3871–3879. doi: 10.1523/JNEUROSCI.6676-10.2011. [b]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 393.Andre R., Lerouet D., Kimber I., Pinteaux E., Rothwell N.J. Regulation of expression of the novel IL-1 receptor family members in the mouse brain. J. Neurochem. 2005;95(2):324–330. doi: 10.1111/j.1471-4159.2005.03364.x. [http://dx.doi.org/10.1111/j.1471-4159.2005.03364.x]. [PMID: 16086690]. [DOI] [PubMed] [Google Scholar]
- 394.Villena J., Suzuki R., Fujie H., Chiba E., Takahashi T., Tomosada Y., Shimazu T., Aso H., Ohwada S., Suda Y., Ikegami S., Itoh H., Alvarez S., Saito T., Kitazawa H. Immunobiotic Lactobacillus jensenii modulates the Toll-like receptor 4-induced inflammatory response via negative regulation in porcine antigen-presenting cells. Clin. Vaccine Immunol. 2012;19(7):1038–1053. doi: 10.1128/CVI.00199-12. [http://dx.doi.org/10.1128/CVI.00199-12]. [PMID: 22573738]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 395.Linnartz-Gerlach B., Kopatz J., Neumann H. Siglec functions of microglia. Glycobiology. 2014;24(9):794–799. doi: 10.1093/glycob/cwu044. [http://dx.doi.org/10.1093/glycob/cwu044]. [PMID: 24833613]. [DOI] [PubMed] [Google Scholar]
- 396.Crocker P.R. Siglecs in innate immunity. Curr. Opin. Pharmacol. 2005;5(4):431–437. doi: 10.1016/j.coph.2005.03.003. [http://dx.doi.org/10.1016/j.coph.2005.03. 003]. [PMID: 15955740]. [DOI] [PubMed] [Google Scholar]
- 397.Crocker P.R., Paulson J.C., Varki A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 2007;7(4):255–266. doi: 10.1038/nri2056. [http://dx.doi.org/10.1038/nri2056]. [PMID: 17380156]. [DOI] [PubMed] [Google Scholar]
- 398.Varki A., Angata T. Siglecsthe major subfamily of I-type lectins. Glycobiology. 2006;16(1):1R–27R. doi: 10.1093/glycob/cwj008. [http://dx.doi.org/10.1093/glycob/cwj008]. [PMID: 16014749]. [DOI] [PubMed] [Google Scholar]
- 399.Cao H., Lakner U., de Bono B., Traherne J.A., Trowsdale J., Barrow A.D. SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur. J. Immunol. 2008;38(8):2303–2315. doi: 10.1002/eji.200738078. [http://dx.doi.org/10.1002/eji.200738078]. [PMID: 18629938]. [DOI] [PubMed] [Google Scholar]
- 400.Satoh J., Kino Y., Motohashi N., Ishida T., Yagishita S., Jinnai K., Arai N., Nakamagoe K., Tamaoka A., Saito Y., Arima K. Immunohistochemical characterization of CD33 expression on microglia in Nasu-Hakola disease brains. Neuropathology. 2015;35(6):529–537. doi: 10.1111/neup.12222. [http://dx.doi.org/10.1111/neup.12222]. [PMID: 26087043]. [DOI] [PubMed] [Google Scholar]
- 401.Bertram L., Lange C., Mullin K., Parkinson M., Hsiao M., Hogan M.F., Schjeide B.M., Hooli B., Divito J., Ionita I., Jiang H., Laird N., Moscarillo T., Ohlsen K.L., Elliott K., Wang X., Hu-Lince D., Ryder M., Murphy A., Wagner S.L., Blacker D., Becker K.D., Tanzi R.E. Genome-wide association analysis reveals putative Alzheimers disease susceptibility loci in addition to APOE. Am. J. Hum. Genet. 2008;83(5):623–632. doi: 10.1016/j.ajhg.2008.10.008. [http://dx. doi.org/10.1016/j.ajhg.2008.10.008]. [PMID: 18976728]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 402.Griciuc A., Serrano-Pozo A., Parrado A.R., Lesinski A.N., Asselin C.N., Mullin K., Hooli B., Choi S.H., Hyman B.T., Tanzi R.E. Alzheimers disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron. 2013;78(4):631–643. doi: 10.1016/j.neuron.2013.04.014. [http://dx.doi.org/10.1016/j.neuron.2013.04.014]. [PMID: 23623698]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 403.Lajaunias F., Dayer J-M., Chizzolini C. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur. J. Immunol. 2005;35(1):243–251. doi: 10.1002/eji.200425273. [http://dx. doi.org/10.1002/eji.200425273]. [PMID: 15597323]. [DOI] [PubMed] [Google Scholar]
- 404.Claude J., Linnartz-Gerlach B., Kudin A.P., Kunz W.S., Neumann H. Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst. J. Neurosci. 2013;33(46):18270–18276. doi: 10.1523/JNEUROSCI.2211-13.2013. [http://dx.doi.org/10.1523/JNEUROSCI.2211-13.2013]. [PMID: 24227736]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 405.Brown G.D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 2006;6(1):33–43. doi: 10.1038/nri1745. [http://dx.doi.org/10.1038/nri1745]. [PMID: 16341139]. [DOI] [PubMed] [Google Scholar]
- 406.Osorio F., Reis e Sousa C. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity. 2011;34(5):651–664. doi: 10.1016/j.immuni.2011.05.001. [http://dx.doi.org/10.1016/j.immuni.2011.05.001]. [PMID: 21616435]. [DOI] [PubMed] [Google Scholar]
- 407.Shah V.B., Huang Y., Keshwara R., Ozment-Skelton T., Williams D.L., Keshvara L. Beta-glucan activates microglia without inducing cytokine production in Dectin-1-dependent manner. J. Immunol. 2008;180(5):2777–2785. doi: 10.4049/jimmunol.180.5.2777. [http://dx.doi.org/10.4049/jimmunol.180.5.2777]. [PMID: 18292498]. [DOI] [PubMed] [Google Scholar]
- 408.Yan J., Wu B., Huang B., Huang S., Jiang S., Lu F. Dectin-1-CD37 association regulates IL-6 expression during Toxoplasma gondii infection. Parasitol. Res. 2014;113(8):2851–2860. doi: 10.1007/s00436-014-3946-1. [http://dx.doi.org/10.1007/s00436-014-3946-1]. [PMID: 24870248]. [DOI] [PubMed] [Google Scholar]
- 409.Baldwin K.T., Carbajal K.S., Segal B.M., Giger R.J. Neuro- inflammation triggered by β-glucan/dectin-1 signaling enables CNS axon regeneration. Proc. Natl. Acad. Sci. USA. 2015;112(8):2581–2586. doi: 10.1073/pnas.1423221112. [http://dx.doi.org/10.1073/pnas.1423221112]. [PMID: 25675510]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 410.Rogers N.C., Slack E.C., Edwards A.D., Nolte M.A., Schulz O., Schweighoffer E., Williams D.L., Gordon S., Tybulewicz V.L., Brown G.D., Reis e Sousa C. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22(4):507–517. doi: 10.1016/j.immuni.2005.03.004. [http://dx.doi.org/10.1016/ j.immuni.2005.03.004]. [PMID: 15845454]. [DOI] [PubMed] [Google Scholar]
- 411.Maneu V., Yáñez A., Murciano C., Molina A., Gil M.L., Gozalbo D. Dectin-1 mediates in vitro phagocytosis of Candida albicans yeast cells by retinal microglia. FEMS Immunol. Med. Microbiol. 2011;63(1):148–150. doi: 10.1111/j.1574-695X.2011.00829.x. [http://dx.doi.org/10.1111/ j.1574-695X.2011.00829.x]. [PMID: 21668824]. [DOI] [PubMed] [Google Scholar]
- 412.Ikeda Y., Adachi Y., Ishii T., Miura N., Tamura H., Ohno N. Dissociation of Toll-like receptor 2-mediated innate immune response to Zymosan by organic solvent-treatment without loss of Dectin-1 reactivity. Biol. Pharm. Bull. 2008;31(1):13–18. doi: 10.1248/bpb.31.13. [http://dx.doi.org/10.1248/bpb.31.13]. [PMID: 18175935]. [DOI] [PubMed] [Google Scholar]
- 413.Gensel J.C., Wang Y., Guan Z., Beckwith K.A., Braun K.J., Wei P., McTigue D.M., Popovich P.G. Toll-Like Receptors and Dectin-1, a C-Type Lectin Receptor, Trigger Divergent Functions in CNS Macrophages. J. Neurosci. 2015;35(27):9966–9976. doi: 10.1523/JNEUROSCI.0337-15.2015. [http://dx.doi.org/10.1523/JNEUROSCI.0337-15.2015]. [PMID: 26156997]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 414.Edagawa Y., Smriga M., Nishiyama N., Saito H. Systemic administration of lentinan, a branched beta-glucan, enhances long-term potentiation in the rat dentate gyrus in vivo. Neurosci. Lett. 2001;314(3):139–142. doi: 10.1016/s0304-3940(01)02301-1. [http://dx.doi.org/10.1016/S0304-3940(01)02301-1]. [PMID: 11704303]. [DOI] [PubMed] [Google Scholar]
- 415.Neumann J., Gunzer M., Gutzeit H.O., Ullrich O., Reymann K.G., Dinkel K. Microglia provide neuroprotection after ischemia. FASEB J. 2006;20(6):714–716. doi: 10.1096/fj.05-4882fje. [PMID: 16473887]. [DOI] [PubMed] [Google Scholar]
- 416.Girard S., Brough D., Lopez-Castejon G., Giles J., Rothwell N.J., Allan S.M. Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia. 2013;61(5):813–824. doi: 10.1002/glia.22478. [http://dx.doi.org/10.1002/glia.22478]. [PMID: 23404620]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 417.Kitamura Y., Takata K., Inden M., Tsuchiya D., Yanagisawa D., Nakata J., Taniguchi T. Intracerebroventricular injection of microglia protects against focal brain ischemia. J. Pharmacol. Sci. 2004;94(2):203–206. doi: 10.1254/jphs.94.203. [http://dx.doi.org/10.1254/jphs.94.203]. [PMID: 14978360]. [DOI] [PubMed] [Google Scholar]
- 418.Kitamura Y., Yanagisawa D., Inden M., Takata K., Tsuchiya D., Kawasaki T., Taniguchi T., Shimohama S. Recovery of focal brain ischemia-induced behavioral dysfunction by intracerebroventricular injection of microglia. J. Pharmacol. Sci. 2005;97(2):289–293. doi: 10.1254/jphs.sc0040129. [http://dx.doi.org/10.1254/jphs.SC0040129]. [PMID: 15684564]. [DOI] [PubMed] [Google Scholar]
- 419.Imai F., Suzuki H., Oda J., Ninomiya T., Ono K., Sano H., Sawada M. Neuroprotective effect of exogenous microglia in global brain ischemia. J. Cereb. Blood Flow Metab. 2007;27(3):488–500. doi: 10.1038/sj.jcbfm.9600362. [http://dx.doi.org/10.1038/sj.jcbfm.9600362]. [PMID: 16820801]. [DOI] [PubMed] [Google Scholar]
- 420.Hayashi Y., Tomimatsu Y., Suzuki H., Yamada J., Wu Z., Yao H., Kagamiishi Y., Tateishi N., Sawada M., Nakanishi H. The intra-arterial injection of microglia protects hippocampal CA1 neurons against global ischemia-induced functional deficits in rats. Neuroscience. 2006;142(1):87–96. doi: 10.1016/j.neuroscience.2006.06.003. [http://dx.doi.org/10.1016/ j.neuroscience.2006.06.003]. [PMID: 16844302]. [DOI] [PubMed] [Google Scholar]
- 421.Wang J., Wegener J.E., Huang T.W., Sripathy S., De Jesus-Cortes H., Xu P., Tran S., Knobbe W., Leko V., Britt J., Starwalt R., McDaniel L., Ward C.S., Parra D., Newcomb B., Lao U., Nourigat C., Flowers D.A., Cullen S., Jorstad N.L., Yang Y., Glaskova L., Vingeau S., Kozlitina J., Yetman M.J., Jankowsky J.L., Reichardt S.D., Reichardt H.M., Gärtner J., Bartolomei M.S., Fang M., Loeb K., Keene C.D., Bernstein I., Goodell M., Brat D.J., Huppke P., Neul J.L., Bedalov A., Pieper A.A. Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature. 2015;521(7552):E1–E4. doi: 10.1038/nature14444. [http://dx.doi.org/10.1038/nature14444]. [PMID: 25993969]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 422.Moriguchi S., Mizoguchi Y., Tomimatsu Y., Hayashi Y., Kadowaki T., Kagamiishi Y., Katsube N., Yamamoto K., Inoue K., Watanabe S., Nabekura J., Nakanishi H. Potentiation of NMDA receptor-mediated synaptic responses by microglia. Brain Res. Mol. Brain Res. 2003;119(2):160–169. doi: 10.1016/j.molbrainres.2003.09.007. [http://dx.doi.org/10.1016/j.molbrainres.2003.09.007]. [PMID: 14625083]. [DOI] [PubMed] [Google Scholar]
- 423.Moraes C.A., Santos G., de Sampaio e Spohr T.C., DAvila J.C., Lima F.R., Benjamim C.F., Bozza F.A., Gomes F.C. Activated microglia-induced deficits in excitatory synapses through IL-1β: implications for cognitive impairment in sepsis. Mol. Neurobiol. 2015;52(1):653–663. doi: 10.1007/s12035-014-8868-5. [http://dx.doi.org/10.1007/s12035-014-8868-5]. [PMID: 25257696]. [DOI] [PubMed] [Google Scholar]
- 424.Cui Y., Park J.Y., Wu J., Lee J.H., Yang Y.S., Kang M.S., Jung S.C., Park J.M., Yoo E.S., Kim S.H., Ahn Jo S., Suk K., Eun S.Y. Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways. Korean J. Physiol. Pharmacol. 2015;19(3):219–228. doi: 10.4196/kjpp.2015.19.3.219. [http://dx. doi.org/10.4196/kjpp.2015.19.3.219]. [PMID: 25954126]. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 425.Molet J., Mauborgne A., Diallo M., Armand V., Geny D., Villanueva L., Boucher Y., Pohl M. Microglial Janus kinase/signal transduction and activator of transcription 3 pathway activity directly impacts astrocyte and spinal neuron characteristics. J. Neurochem. 2016;136(1):133–147. doi: 10.1111/jnc.13375. [http://dx.doi.org/10.1111/ jnc.13375]. [PMID: 26440453]. [DOI] [PubMed] [Google Scholar]
- 426.Zheng H., Zhu W., Zhao H., Wang X., Wang W., Li Z. Kainic acid-activated microglia mediate increased excitability of rat hippocampal neurons in vitro and in vivo: crucial role of interleukin-1beta. Neuroimmunomodulation. 2010;17(1):31–38. doi: 10.1159/000243083. [http://dx.doi.org/10.1159/000243083]. [PMID: 19816055]. [DOI] [PubMed] [Google Scholar]
- 427.Peña-Ortega F., Rivera-Angulo A.J., Lorea-Hernández J.J. Pharmacological tools to study the role of astrocytes in neural network functions. Adv. Exp. Med. Biol. 2016;949:47–66. doi: 10.1007/978-3-319-40764-7_3. [http://dx.doi.org/10.1007/978-3-319-40764-7_3]. [PMID: 27714684]. [DOI] [PubMed] [Google Scholar]
