Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1985 Dec 1;4(12):3099–3104. doi: 10.1002/j.1460-2075.1985.tb04051.x

Low or undetectable levels of surface high affinity cholera toxin receptors on normal hemopoietic growth factor-dependent cells.

M Lanotte, N Lacaze
PMCID: PMC554628  PMID: 3912166

Abstract

The membrane monosialoganglioside GM1, the high affinity receptor for cholera toxin, is generally considered ubiquitous on normal cells. It was found to be abundant both on normal mature hemopoietic cells and on leukemic cells. By contrast, the normal factor-dependent cell lines, which achieve indefinite proliferation in the presence of the multilineage hemopoietic growth factor apparently displayed the unique character of having low or undetectable levels of surface membrane and cytoplasmic cholera toxin receptors. These results were obtained by the Scatchard analysis of 125iodinated toxin binding, immunofluorescence studies and gel electrophoresis autoradiography. This corroborated the fact that these cells were highly resistant to growth inhibition by cholera toxin (microM to fM) while normal mature cells and leukemic cells of similar phenotype were sensitive.

Full text

PDF
3099

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman G. A., Wolken K. W., Gelder F. B. Differential expression of surface monosialoganglioside GM1 in various hemic cell lines of normal human bone marrow. A quantitative immunocytochemical study using the cholera toxin-gold-labeled anti-cholera toxin procedure. J Histochem Cytochem. 1980 Dec;28(12):1334–1342. doi: 10.1177/28.12.7014713. [DOI] [PubMed] [Google Scholar]
  2. Ackerman G. A., Wolken K. W., Gelder F. B. Surface distribution of monosialoganglioside GM1 on human blood cells and the effect of exogenous GM1 and neuraminidase on cholera toxin surface labeling. A quantitative immunocytochemical study. J Histochem Cytochem. 1980 Oct;28(10):1100–1112. doi: 10.1177/28.10.6775025. [DOI] [PubMed] [Google Scholar]
  3. Burridge K. Direct identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels. Methods Enzymol. 1978;50:54–64. doi: 10.1016/0076-6879(78)50007-4. [DOI] [PubMed] [Google Scholar]
  4. Critchley D. R., Streuli C. H., Kellie S., Ansell S., Patel B. Characterization of the cholera toxin receptor on Balb/c 3T3 cells as a ganglioside similar to, or identical with, ganglioside GM1. No evidence for galactoproteins with receptor activity. Biochem J. 1982 Apr 15;204(1):209–219. doi: 10.1042/bj2040209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cuatrecasas P. Gangliosides and membrane receptors for cholera toxin. Biochemistry. 1973 Aug 28;12(18):3558–3566. doi: 10.1021/bi00742a032. [DOI] [PubMed] [Google Scholar]
  6. Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
  7. Dexter T. M., Garland J., Scott D., Scolnick E., Metcalf D. Growth of factor-dependent hemopoietic precursor cell lines. J Exp Med. 1980 Oct 1;152(4):1036–1047. doi: 10.1084/jem.152.4.1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dexter T. M. Stromal cell associated haemopoiesis. J Cell Physiol Suppl. 1982;1:87–94. doi: 10.1002/jcp.1041130414. [DOI] [PubMed] [Google Scholar]
  9. Fishman P. H., Brady R. O. Biosynthesis and function of gangliosides. Science. 1976 Nov 26;194(4268):906–915. doi: 10.1126/science.185697. [DOI] [PubMed] [Google Scholar]
  10. Fishman P. H. Internalization and degradation of cholera toxin by cultured cells: relationship to toxin action. J Cell Biol. 1982 Jun;93(3):860–865. doi: 10.1083/jcb.93.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greenberger J. S. Self-renewal of factor-dependent hemopoietic progenitor cell-lines derived from long-term bone marrow cultures demonstrates significant mouse strain genotypic variation. J Supramol Struct. 1980;13(4):501–511. doi: 10.1002/jss.400130409. [DOI] [PubMed] [Google Scholar]
  12. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  13. Holmgren J. Actions of cholera toxin and the prevention and treatment of cholera. Nature. 1981 Jul 30;292(5822):413–417. doi: 10.1038/292413a0. [DOI] [PubMed] [Google Scholar]
  14. Holmgren J., Lindholm L., Lönnroth I. Interaction of cholera toxin and toxin derivatives with lymphocytes. I. Binding properties and interference with lectin-induced cellular stimulation. J Exp Med. 1974 Apr 1;139(4):801–819. doi: 10.1084/jem.139.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ihle J. N., Keller J., Oroszlan S., Henderson L. E., Copeland T. D., Fitch F., Prystowsky M. B., Goldwasser E., Schrader J. W., Palaszynski E. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol. 1983 Jul;131(1):282–287. [PubMed] [Google Scholar]
  16. Iscove N. N., Melchers F. Complete replacement of serum by albumin, transferrin, and soybean lipid in cultures of lipopolysaccharide-reactive B lymphocytes. J Exp Med. 1978 Mar 1;147(3):923–933. doi: 10.1084/jem.147.3.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iscove N. N., Roitsch C. A., Williams N., Guilbert L. J. Molecules stimulating early red cell, granulocyte, macrophage, and megakaryocyte precursors in culture: similarity in size, hydrophobicity, and charge. J Cell Physiol Suppl. 1982;1:65–78. doi: 10.1002/jcp.1041130412. [DOI] [PubMed] [Google Scholar]
  18. Johnson L. V., Walsh M. L., Bockus B. J., Chen L. B. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol. 1981 Mar;88(3):526–535. doi: 10.1083/jcb.88.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaplan F., Hechtman P. Purification and properties of two enzymes catalyzing galactose transfer to GM2 ganglioside from rat liver Golgi. J Biol Chem. 1983 Jan 25;258(2):770–776. [PubMed] [Google Scholar]
  20. Lanotte M., Lacaze N., Gombaud-Saintonge G. Evaluation of the clonogenic cell population (Leuk-CFU) in the marrow of BN rats during development of a promyelocytic leukemia (BNML): an in vitro assay. Leuk Res. 1984;8(1):71–80. doi: 10.1016/0145-2126(84)90033-x. [DOI] [PubMed] [Google Scholar]
  21. Mercurio A. M., Schwarting G. A., Robbins P. W. Glycolipids of the mouse peritoneal macrophage. Alterations in amount and surface exposure of specific glycolipid species occur in response to inflammation and tumoricidal activation. J Exp Med. 1984 Oct 1;160(4):1114–1125. doi: 10.1084/jem.160.4.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morré D. J., Kloppel T. M., Merritt W. D., Keenan T. W. Glycolipids as indicators of tumorigenesis. J Supramol Struct. 1978;9(2):157–177. doi: 10.1002/jss.400090203. [DOI] [PubMed] [Google Scholar]
  23. Ralph P., Moore M. A., Nilsson K. Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med. 1976 Jun 1;143(6):1528–1533. doi: 10.1084/jem.143.6.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sharom F. J., Grant C. W. A model for ganglioside behaviour in cell membranes. Biochim Biophys Acta. 1978 Feb 21;507(2):280–293. doi: 10.1016/0005-2736(78)90423-6. [DOI] [PubMed] [Google Scholar]
  25. Spiegel S., Ravid A., Wilchek M. Involvement of gangliosides in lymphocyte stimulation. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5277–5281. doi: 10.1073/pnas.76.10.5277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tayot J. L., Holmgren J., Svennerholm L., Lindblad M., Tardy M. Receptor-specific large-scale purification of cholera toxin on silica beads derivatized with lysoGM1 ganglioside. Eur J Biochem. 1981 Jan;113(2):249–258. doi: 10.1111/j.1432-1033.1981.tb05060.x. [DOI] [PubMed] [Google Scholar]
  27. Tertian G., Yung Y. P., Guy-Grand D., Moore M. A. Long-term in vitro culture of murine mast cells. I. Description of a growth factor-dependent culture technique. J Immunol. 1981 Aug;127(2):788–794. [PubMed] [Google Scholar]
  28. Tertian G., Yung Y. P., Moore M. A. Induction and long-term maintenance of Thy-1 positive T lymphocytes: derivation from continuous bone marrow cultures. J Supramol Struct. 1980;13(4):533–539. doi: 10.1002/jss.400130412. [DOI] [PubMed] [Google Scholar]
  29. Whetton A. D., Bazill G. W., Dexter T. M. Haemopoietic cell growth factor mediates cell survival via its action on glucose transport. EMBO J. 1984 Feb;3(2):409–413. doi: 10.1002/j.1460-2075.1984.tb01821.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Whetton A. D., Dexter T. M. Effect of haematopoietic cell growth factor on intracellular ATP levels. Nature. 1983 Jun 16;303(5918):629–631. doi: 10.1038/303629a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES