Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Feb 7;23(5):263–270. doi: 10.1007/s12264-007-0039-5

Targeted migration and differentiation of engrafted neural precursor cells in amyloid β-treated hippocampus in rats

胚胎干细胞来源的神经前体细胞移植 β-淀粉样蛋白损伤大鼠海马后的靶向迁移与分化

Jun Tang 1, Hai-Wei Xu 1,, Xiao-Tang Fan 2, Zhi-Fang Li 1,3, Da-Bing Li 1, Li Yang 1, Guang-Ji Zhou 1
PMCID: PMC5550573  PMID: 17952134

Abstract

Objective

To observe the migration and differentiation of the neural precursor cells (NPCs) that derived from murine embryonic stem cells (ESCs) when they were transplanted into amyloid β (Aβ)-treated rat hippocampus.

Methods

MESPU35, a murine ESC cell line that express the enhanced green fluorescent protein (EGFP), was induced differentiation into nestin-positive NPCs by modified serum-free methods. The Aβ plaques and the differentiation of the grafted cells were observed by immunofluorescent staining.

Results

Comparing 16 weeks with 4 weeks post-transplantation, the migration distance increased about 5 times; the rate of migratory NPCs differentiating into glial fibrillary acidic protein (GFAP)-positive cells kept rising from (30.41±1.45)% to (49.25±1.23)%, and the rate of NPCs differentiating into neurofilament 200 (NF200) positive cells increased from (16.68±0.95)% to (27.94±1.21)%. Meanwhile, the GFAP-positive cells targeting to the ipsilateral side of Aβ plaques increased from 60.2% to 81.3%, while the NF200-positive cells increased from 61.3% to 84.1%. The migration distance had significant positive linear correlations to the neuronal differentiation rate (r = 0.991) and to the astrocytic differentiation rate (r = 0.953).

Conclusion

Engrafted NPCs migrate targetedly to the Aβ injection site and differentiate into neurons and astrocytes.

Keywords: embryonic stem cells, amyloid β peptide, cell transplantation, differentiation, migration, rat

References

  • [1].Gage F.H. Mammalian neural stem cells. Science. 2000;287:1433–1438. doi: 10.1126/science.287.5457.1433. [DOI] [PubMed] [Google Scholar]
  • [2].Lindvall O., Hagell P. Cell replacement therapy in human neurodegenerative disorders. Clin Neuronsci Res. 2002;2:86–92. doi: 10.1016/S1566-2772(02)00010-5. [DOI] [Google Scholar]
  • [3].Lindvall O., Kokaia Z., Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med. 2004;10:42–50. doi: 10.1038/nm1064. [DOI] [PubMed] [Google Scholar]
  • [4].Evans M.J., Kaufman M.H. Establishment in culture of pluripotent cells from mouse embryos. Nature. 1981;292:154–156. doi: 10.1038/292154a0. [DOI] [PubMed] [Google Scholar]
  • [5].Brüstle O., McKay R.D. Neuronal progenitors as tools for cell replacement in the nervous system. Curr Opin Neurobiol. 1996;6:688–695. doi: 10.1016/S0959-4388(96)80104-8. [DOI] [PubMed] [Google Scholar]
  • [6].Rossi F., Cattaneo E. Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci. 2002;3:401–409. doi: 10.1038/nrn809. [DOI] [PubMed] [Google Scholar]
  • [7].Reubinoff B.E., Itsykson P., Turetsky T., Pera M.F., Reinhartz E., Itzik A., et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol. 2001;19:1134–1140. doi: 10.1038/nbt1201-1134. [DOI] [PubMed] [Google Scholar]
  • [8].Dizon M.L., Shin L., Sundholm-Peters N.L., Kang E., Szele F.G. Subventricular zone cells remain stable in vitro after brain injury. Neuroscience. 2006;142:717–725. doi: 10.1016/j.neuroscience.2006.06.050. [DOI] [PubMed] [Google Scholar]
  • [9].Mohapel P., Mundt-Petersen K., Brundin P., Frielingsdorf H. Working memory training decreases hippocampal neurogenesis. Neuroscience. 2006;142:609–613. doi: 10.1016/j.neuroscience.2006.07.033. [DOI] [PubMed] [Google Scholar]
  • [10].Dziewczapolski G., Lie D.C., Ray J., Gage F.H., Shults C.W. Survival and differentiation of adult rat-derived neural progenitor cells transplanted to the striatum of hemiparkinsonian rats. Exp Neurol. 2003;183:653–664. doi: 10.1016/S0014-4886(03)00212-7. [DOI] [PubMed] [Google Scholar]
  • [11].Rosaria M.R.G., Marzia P., Giorgio C. Regulatory genes controlling cell fate choice in embryonic and adult neural stem cells. J Neurochem. 2004;89:286–306. doi: 10.1046/j.1471-4159.2004.02310.x. [DOI] [PubMed] [Google Scholar]
  • [12].Alvarez-Buylla A., Lim D.A. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41:683–686. doi: 10.1016/S0896-6273(04)00111-4. [DOI] [PubMed] [Google Scholar]
  • [13].Markakis E.A., Gage F.H. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol. 1999;406:449–460. doi: 10.1002/(SICI)1096-9861(19990419)406:4<449::AID-CNE3>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  • [14].Goings G.E., Sahni V., Szele F.G. Migration patterns of subventricular zone cells in adult mice change after cerebral cortex injury. Brain Res. 2004;996:213–226. doi: 10.1016/j.brainres.2003.10.034. [DOI] [PubMed] [Google Scholar]
  • [15].Arvidsson A., Cllin T., Kirik D., Kokaia Z., Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8:963–970. doi: 10.1038/nm747. [DOI] [PubMed] [Google Scholar]
  • [16].Teng L., Meng G.L., Xing Y., Shang K.G., Wang X.K., Gu J. Labeling embryonic stem cell with enhanced green fluorescent protein on the hypoxanthineguanine phosphoribosyl transferase locus. Chin Med J. 2003;116:267–272. [PubMed] [Google Scholar]
  • [17].Xu H.W., Fan X.T., Wu X., Tang J., Yang H. Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behaviour in a rat model of Parkinson’s disease. Biochem Bioph Res Co. 2005;326:115–122. doi: 10.1016/j.bbrc.2004.10.210. [DOI] [PubMed] [Google Scholar]
  • [18].Xu H.W., Fan X.T., Tang J., Zhou G.J., Yang L., Wu X., et al. A modified method for generation of neural precursor cells from cultured mouse embryonic stem cells. Brain Res Protoc. 2005;15:52–58. doi: 10.1016/j.brainresprot.2005.03.004. [DOI] [PubMed] [Google Scholar]
  • [19].Giovannelli L., Casamenti F., Scali C., Bartolini L., Pepeu G. Differential effects of amyloid peptides β-(1–40) and β-(25–35) injections into the rat nucleus basalis. Neuroscience. 1995;66:781–792. doi: 10.1016/0306-4522(94)00610-H. [DOI] [PubMed] [Google Scholar]
  • [20].Li D.B., Tang J., Fan X.T., Song M., Xu H.W., Bai Y. Comparative study of histopathology changes between the PS1/APP double transgenic mouse model and Aβ1–40-injected rat model of Alzheimer disease. Neurosci Bull. 2006;22:52–57. [PubMed] [Google Scholar]
  • [21].Paxions G., Watson C. The rat brain in stereotaxic coordinates. 2. New York: Academic press; 1986. [Google Scholar]
  • [22].Muraoka K., Shingo T., Yasuhara T., Kameda M., Yuan W., Hayase H., et al. The high integration and differentiation potential of autologous neural stem cell transplantation compared with allogeneic transplantation in adult rat hippocampus. Exp Neurol. 2006;199:311–327. doi: 10.1016/j.expneurol.2005.12.004. [DOI] [PubMed] [Google Scholar]
  • [23].Toda H., Takahashi J., Mizoguchi A., Koyano K., Hashimoto N. Neurons generated from adult rat hippocampal stem cells form functional glutamatergic and GABAergic synapses in vitro. Exp Neurol. 2000;165:66–76. doi: 10.1006/exnr.2000.7473. [DOI] [PubMed] [Google Scholar]
  • [24].Soares S., Sotelo C. Adult neural stem cells from the mouse subventricular zone are limited in migratory ability compared to progenitor cells of similar origin. Neuroscience. 2004;128:807–817. doi: 10.1016/j.neuroscience.2004.07.031. [DOI] [PubMed] [Google Scholar]
  • [25].Lois C., Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264:1145–1148. doi: 10.1126/science.8178174. [DOI] [PubMed] [Google Scholar]
  • [26].Jankovski A., Sotelo C. Subventricular zone-olfactory bulb migratory pathway in the adult mouse: cellular composition and specificity as determined by heterochronic and heterotopic transplantation. J Comp Neurol. 1996;371:376–396. doi: 10.1002/(SICI)1096-9861(19960729)371:3<376::AID-CNE3>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  • [27].Jankovski A., Rossi F., Sotelo C. Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantations. Eur J Neurosci. 1996;8:2308–2319. doi: 10.1111/j.1460-9568.1996.tb01194.x. [DOI] [PubMed] [Google Scholar]
  • [28].Englund U., Björklund A., Wictorin K. Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain. Dev Brain Res. 2002;134:123–141. doi: 10.1016/S0165-3806(01)00330-3. [DOI] [PubMed] [Google Scholar]
  • [29].Darius W., Wolf H., Frank E., Bernd N., Kurt Z., Barbara K., et al. MCP-1 induces migration of adult neural stem cell. Eur J Cell Biol. 2004;83:381–387. doi: 10.1078/0171-9335-00403. [DOI] [PubMed] [Google Scholar]
  • [30].Björklund A., Lindvall O. Cell replacement therapies for central nervous system disorders. Nat Neurosci. 2000;3:537–544. doi: 10.1038/75705. [DOI] [PubMed] [Google Scholar]
  • [31].Svendsen C.N., Smith A.G. New prospects for human stem-cell therapy in the nervous system. Trends Neurosci. 1999;22:357–364. doi: 10.1016/S0166-2236(99)01428-9. [DOI] [PubMed] [Google Scholar]
  • [32].Tamagnone L., Comoglio P.M. Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol. 2000;10:377–383. doi: 10.1016/S0962-8924(00)01816-X. [DOI] [PubMed] [Google Scholar]
  • [33].Eucher J.N., Uemura E., Sakaguchi D.S., Greenlee M.H.W. Amyloid-β peptide affects viability but not differentiation of embryo and adult rat hippocampal progenitor cells. Exp Neurol. 2007;203:486–492. doi: 10.1016/j.expneurol.2006.09.021. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES