Abstract
Objective
To investigate lipopolysaccharide (LPS) induced acute cerebral inflammatory damage and the therapeutic effect of ginkgolide B (BN52021).
Methods
Thirty Sprague-Dawley rats were randomly divided into 3 groups (n = 10 for each group): Control group, Model group and Treatment group (treated with BN52021). LPS were injected into the fourth ventricle of rat to make a neuroinflammatory murine model. Morris water maze was used to detect the learning and memory ability of rats; changes of synapse number and subcellular ultrastructures were observed under a transmission electron microscope; OX-42 positive microglia in the brain was detected by immunohistochemical method.
Results
The average escape latency in the Treatment group were significantly shortened than that in the Model group; and the percentage of swimming distance traveled in platform quadrant accounting for total distance increased markedly. The rough endoplasmic reticulum and polyribosomes in the Treatment group were more than that in the Model group, but the number of synapses seemed to have no obvious change. The number of OX-42 positive microglia in the Treatment group decreased markedly than that in the Model group, and the grey density of OX-42-positive cells increased significantly.
Conclusion
LPS can induce inflammatory damages to the brain, but the damage could be antagonized by BN52021. Platelet activating factor receptor antagonist may offer an effective therapy for neurodegeneration diseases.
Keywords: brain inflammation, platelet activating factor, ginkgolide B, ultrastructure, microglia
摘要
目的
研究脂多糖(lipopolysaccharide, LPS)诱导的脑内炎性损害以及银杏内脂B(BN52021)的干预治疗效果。
方法
Sprague-Dawley 大鼠30 只, 随机分为对照组, 模型组和治疗组(BN52021 治疗), 每组10 只。 第β脑室注射LPS造模, Morris 水迷宫检测实验动物学习和记忆能力; 透射电子显微镜观察海马神经元突触数量 及亚细胞结构的变化; 免疫组织化学法检测脑内OX-42在小胶质细胞内的表达。
结果
治疗组大鼠的水迷宫逃 避潜伏期比模型组显著缩短, 平台象限游泳距离百分比显著增加; 治疗组大鼠海马神经元内质网和核糖体数量 比模型组明显增加, 突触数量则无明显变化; 治疗组大鼠脑内的OX-42阳性小胶质细胞数量比模型组明显减少, 染色灰度上升。
结论
LPS可诱导脑内炎性损害, 血小板活化因子受体拮抗剂BN52021对LPS诱导的脑内炎性 损害具有保护作用, 提示血小板活化因子受体拮抗剂对以中枢炎症为病理特征的神经退行性变有治疗作用。
关键词: 神经炎症, 血小板活化因子, 银杏内脂B, 超微结构, 小胶质细胞
References
- [1].Pavlik V.N., Doody R.S., Massman, Chan W. Influence of premorbid IQ and education on progression of Alzheimer’s disease. Dement Geriatr Cogn Disord. 2006;22:367–377. doi: 10.1159/000095640. [DOI] [PubMed] [Google Scholar]
- [2].Walker D.G., Link J., Lue L.F., Dalsing-Hernandez J.E., Boyes B.E. Gene expression changes by amyloid β peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. J Leukoc Biol. 2006;79:596–610. doi: 10.1189/jlb.0705377. [DOI] [PubMed] [Google Scholar]
- [3].Gasparini L., Ongini E., Wilcock, Morgan D. Activity of flurbiprofen and chemically related anti-inflammatory drugs in models of Alzheimer’s disease. Brain Res Brain Res Rev. 2005;48:400–408. doi: 10.1016/j.brainresrev.2004.12.029. [DOI] [PubMed] [Google Scholar]
- [4].Hershkowitz M., Adunsky A. Binding of platelet-activating factor to platelets of Alzheimer’s disease and multiinfarct dementia patients. Neurobiol Aging. 1996;17:865–868. doi: 10.1016/S0197-4580(96)00073-5. [DOI] [PubMed] [Google Scholar]
- [5].Pang Y., Cai Z., Rhodes P.G. Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide. Brain Res Dev Brain Res. 2003;140:205–214. doi: 10.1016/S0165-3806(02)00606-5. [DOI] [PubMed] [Google Scholar]
- [6].Zink W.E., Anderson E., Boyle J., Hock L., Rodriguez-Sierra J., Xiong H., et al. Impaired spatial cognition and synaptic potentiation in a murine model of human immunodeficiency virus type 1 encephalitis. J Neurosci. 2002;22:2096–2105. doi: 10.1523/JNEUROSCI.22-06-02096.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [7].Xu J., Qian C.Y. Excitotoxic neurodegeneration in Alzheimer disease. Chin J Neurosci. 2000;16:379–382. [Google Scholar]
- [8].Hauss-Wegrzyniak B., Vannucchi M.G., Wenk G.L. Behavioral and ultrastructural changes induced by chronic neuroinflammation in young rats. Brain Res. 2000;859:157–166. doi: 10.1016/S0006-8993(00)01999-5. [DOI] [PubMed] [Google Scholar]
- [9].Liu Y., Walter S., Stagi M., Cherny D., Letiembre M., Schulz-Schaeffer W., et al. LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain. 2005;128(Pt8):1778–1789. doi: 10.1093/brain/awh531. [DOI] [PubMed] [Google Scholar]
- [10].Hauss-Wegrzyniak B., Lukovic L., Bigaud M., Stoeckel M.E. Brain inflammatory response induced by intracerebroventricular infusion of lipopolysaccharide: an immunohistochemical study. Brain Res. 1998;794:211–224. doi: 10.1016/S0006-8993(98)00227-3. [DOI] [PubMed] [Google Scholar]
- [11].Leutgeb A., Mizumori S.J. Excitotoxic septal lesions result in spatial memory deficits and altered flexibility of hippocampal single-unit representations. J Neurosci. 1999;19:6661–6672. doi: 10.1523/JNEUROSCI.19-15-06661.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Kondratskaya E.L., Pankratov Y.V., Lalo U.V., Chatterjee S.S., Krishtal O.A. Inhibition of hippocampal LTP by ginkgolide B is mediated by its blocking action on PAF rather than glycine receptors. Neurochem Int. 2004;44:171–177. doi: 10.1016/S0197-0186(03)00126-8. [DOI] [PubMed] [Google Scholar]
- [13].Xu Y., Tao Y.X. Involvement of the NMDA receptor/nitric oxide signal pathway in platelet-activating factor-induced neurotoxicity. Neuroreport. 2004;15:263–266. doi: 10.1097/00001756-200402090-00010. [DOI] [PubMed] [Google Scholar]