Abstract
Objective
Intravenous administration of basic fibroblast growth factor (bFGF) is effective to reduce the volume of cerebral infract due to ischemia. This study was designed to investigate the molecular mechanism, especially the signal transduction pathways, involved in this protective role of bFGF.
Methods
Anoxia-reoxygenation treated atrocytes were used to study the role of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MAPK/ERK kinase, MEK)-ERK signaling pathway after exogenous bFGF administration by Western blot. Electrophoretic mobile shift assay was used to detect the binding activity of early growth response factor-1 (Egr-1), an important transcription factor for endogenous bFGF.
Results
BFGF could protect some signal transduction proteins from the oxygen-derived free radicals induced degradation. ERK1/2 was activated and involved in Egr-1 binding activity enhancement induced by exogenous bFGF.
Conclusion
MEK-ERK MAPK cascade may be an important signal transduction pathway contributed to bFGF induced enhancement of Egr-1 binding activity in anoxia-reoxygenation injured astrocytes.
Keywords: extracellular signal-regulated kinase, mitogen-activated protein kinase, free radicals, fibroblast growth factor 2, early growth response protein 1, astrocyte
摘要
目的
静脉注射碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)可以明显降低实验性脑缺血大鼠的脑梗死面积, 但该作用的分子机制尚不清楚。本文旨在研究外源性bFGF 作用的信号转导通路。
方法
缺氧-复氧损伤星形胶质细胞。Western blot 检测外源性 bFGF 作用后丝裂原活化蛋白激酶 / 细胞外信号调节激酶激酶(mitogen-activated protein kinase/extracellular signal-regulated kinase kinase, MEK)-细胞外信号调节激酶(extracellular signal-regulated kinase, ERK) 信号通路活化。电泳变动迁移率分析实验检测外源性bFGF 作用后核转录因子早期生长反应因子-1(early growth respons factor 1, Egr-1)的结合活性变化。
结果
外源性bFGF可以保护胞外信号调节激酶MEK-ERK 信号通路蛋白不被氧自由基降解。MEK-ERK信号通路在外源性bFGF作用后活化。 这一信号通路进一步使Egr-1结合活性升高。
结论
外源性bFGF可能通过激活ERK信号通路, 促进内源性转录因子Egr-1 的结合活性升高, 进而促进内源性bFGF 的表达。
关键词: 细胞外信号调节激酶, 丝裂原活化蛋白激酶, 自由基, 碱性成纤维细胞生长因子, 早期生长反应因子-1, 星形胶质细胞
References
- [1].Liu Y., YE Z.R., Lu J.B., Shi J.Y. Permeability of injured blood brain barrier for exogenous bFGF and protection mechanism of bFGF in rat brain ischemia. Neuropathology. 2006;26:257–266. doi: 10.1111/j.1440-1789.2006.00693.x. [DOI] [PubMed] [Google Scholar]
- [2].Kawamata T., Ren J., Cha J.H., Finklestein S.P. Intracisternal antisense oligonucleotide to growth associated protein-43 blocks the recovery-promoting effects of basic fibroblast growth factor after focal stroke. Exp Neurol. 1999;158:89–96. doi: 10.1006/exnr.1999.7101. [DOI] [PubMed] [Google Scholar]
- [3].Sliverman E.S., Collins T. Pathways of Egr-1-mediated gene transcription in vascular biology. Am J pathol. 1999;154:665–670. doi: 10.1016/S0002-9440(10)65312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Ehrengruber M.U., Muhlebach S.G., Sohrman S., Leutenegger C.M., Lester H.A., Davidson N. Modulation of early growth response transcription factor (Egr)-dependent gene expression by using recombinant adenovirus. Gene. 2000;258:63–69. doi: 10.1016/S0378-1119(00)00445-5. [DOI] [PubMed] [Google Scholar]
- [5].Shi T.Y., Kim M. Inhibitory effect of tumor necrosis factor-α secretion from rat astrocytes by chilbokeum. Immunoparmacol Immunotoxicol. 2001;23:97–106. doi: 10.1081/IPH-100102571. [DOI] [PubMed] [Google Scholar]
- [6].Sakamoto K.M., Bardeleben C., Yates K.E., Raines M.A., Golde D.W., Gasson J.C. 5’upstream sequence and genomic structure of the human primary response gene, Egr-1/TIS8. Oncogene. 1991;6:867–871. [PubMed] [Google Scholar]
- [7].Kaufmann K., Thiel G. Epidermal growth factor and platelet-derived growth factor, induce expression of Egr-1, a zinc finger transcription factor, in human malignant glioma cell. J Neurol Sci. 2001;189:83–91. doi: 10.1016/S0022-510X(01)00562-7. [DOI] [PubMed] [Google Scholar]
- [8].Abe K., Saito H. Neurotrophic effect of basic fibroblast growth factor is mediated by the p42/p44 mitogen-activated protein kinase cascade in cultured rat cortical neurons. Dev Brain Res. 2000;122:81–85. doi: 10.1016/S0165-3806(00)00054-7. [DOI] [PubMed] [Google Scholar]
- [9].Zathehkaja D.S., Lou M.F. Studies of the mitogen-activated protein kinase and phosphatidylinositol-3 kinase in the lens 1 the mitogentic and stress response. Exp Eye Res. 2002;74:703–717. doi: 10.1006/exer.2002.1168. [DOI] [PubMed] [Google Scholar]
- [10].Liang H.Z., Liu Y., Ye Z.R. Growth enhancement effect of BzATP on primary cultured astrocytes from rat brain. Neurosci Bull. 2006;22:151–158. [PubMed] [Google Scholar]
- [11].Adams D.G., Coffee R.L., Zhang H., Pelech S., Strack S., Wadzinski B.E. Positive Regulation of Raf1-MEK1/2-ERK1/2 Signaling by Protein Serine/Threonine Phosphatase 2A. J Biol Chem. 2005;280:42644–42654. doi: 10.1074/jbc.M502464200. [DOI] [PubMed] [Google Scholar]
- [12].Andrews N.C., Faller D.V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991;19:2499. doi: 10.1093/nar/19.9.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Mattson M.P., Scheff S.W. Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J Neurotrauma. 1994;11:3–33. doi: 10.1089/neu.1994.11.3. [DOI] [PubMed] [Google Scholar]
- [14].Kiprianova I., Schindowski K., von Bohlen u., Halbach O., Krause S., Dono R., Schwaninger M., et al. Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking FGF-2. Exp Neurol. 2004;189:252–260. doi: 10.1016/j.expneurol.2004.06.004. [DOI] [PubMed] [Google Scholar]
- [15].Ramirez J., Finklestein S.P., Keller J., Abrams W., George M.N., Parakh T. Basic fibroblast growth factor enhances axonal sprouting after cortical injury in rats. Neuroreport. 1999;10:1201–1204. doi: 10.1097/00001756-199904260-00008. [DOI] [PubMed] [Google Scholar]
- [16].Li Q., Stephenso D. Postischemic Administration of basic fibroblast growth factor improves sensorimotor function and reduces infarct size following permanent focal cerebral ischemia in the rat. Exp Neurol. 2002;177:531–537. doi: 10.1006/exnr.2002.7994. [DOI] [PubMed] [Google Scholar]
- [17].Mattson M.P., Zhang Y., Bose S. Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp Neurol. 1993;121:1–13. doi: 10.1006/exnr.1993.1066. [DOI] [PubMed] [Google Scholar]
- [18].Cheng B., Mattson M.P. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron. 1991;7:1031–1041. doi: 10.1016/0896-6273(91)90347-3. [DOI] [PubMed] [Google Scholar]
- [19].Santiago F.S., Lowe H.C., Day F.L., Chesterman C.N., Khachigian L.M. Early growth respose factor-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2. Am J Pathol. 1999;154:665–670. doi: 10.1016/S0002-9440(10)65341-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ]20].Biesiada E., Razandi M., Levin E.R. Egr-1 activates basic fibroblast growth factor transcription. J Biol Chem. 1996;271:18576–18581. doi: 10.1074/jbc.271.31.18576. [DOI] [PubMed] [Google Scholar]
- [21].Houston P., Campbell C.J., Svaren J., Milbrandt J., Braddock M. The transcriptional corepressor NAB2 block Egr-1-mediated growth factor activation and angiogenesis. Biochem Biophys Res Commun. 2001;283:480–486. doi: 10.1006/bbrc.2001.4810. [DOI] [PubMed] [Google Scholar]
- [22].Lucerna M., Mechtcheriakova D., Kadl A., Schabbauer G., Schafer R., Gruber F., et al. NAB2, a corepression of Egr-1, inhibits vascular endothelial growth factor-mediated gene induction and angiogenic response of endothelial cell. J Bio Chem. 2003;278:11433–11440. doi: 10.1074/jbc.M204937200. [DOI] [PubMed] [Google Scholar]
- [23].Thiel G., Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol. 2002;193:287–292. doi: 10.1002/jcp.10178. [DOI] [PubMed] [Google Scholar]
