Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Feb 1;23(4):221–228. doi: 10.1007/s12264-007-0033-y

Involvement of MAPK/ERK kinase-ERK pathway in exogenous bFGF-induced Egr-1 binding activity enhancement in anoxia-reoxygenation injured astrocytes

MAPK/ERK 激酶-ERK 信号通路参与外源性 bFGF 对缺氧-复氧损伤后星形胶质细胞内 Egr-1 结合活性的调节

Ying Liu 1, Jin-Biao Lu 1, Qi Chen 1, Zhu-Rong Ye 1,
PMCID: PMC5550585  PMID: 17687397

Abstract

Objective

Intravenous administration of basic fibroblast growth factor (bFGF) is effective to reduce the volume of cerebral infract due to ischemia. This study was designed to investigate the molecular mechanism, especially the signal transduction pathways, involved in this protective role of bFGF.

Methods

Anoxia-reoxygenation treated atrocytes were used to study the role of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MAPK/ERK kinase, MEK)-ERK signaling pathway after exogenous bFGF administration by Western blot. Electrophoretic mobile shift assay was used to detect the binding activity of early growth response factor-1 (Egr-1), an important transcription factor for endogenous bFGF.

Results

BFGF could protect some signal transduction proteins from the oxygen-derived free radicals induced degradation. ERK1/2 was activated and involved in Egr-1 binding activity enhancement induced by exogenous bFGF.

Conclusion

MEK-ERK MAPK cascade may be an important signal transduction pathway contributed to bFGF induced enhancement of Egr-1 binding activity in anoxia-reoxygenation injured astrocytes.

Keywords: extracellular signal-regulated kinase, mitogen-activated protein kinase, free radicals, fibroblast growth factor 2, early growth response protein 1, astrocyte

References

  • [1].Liu Y., YE Z.R., Lu J.B., Shi J.Y. Permeability of injured blood brain barrier for exogenous bFGF and protection mechanism of bFGF in rat brain ischemia. Neuropathology. 2006;26:257–266. doi: 10.1111/j.1440-1789.2006.00693.x. [DOI] [PubMed] [Google Scholar]
  • [2].Kawamata T., Ren J., Cha J.H., Finklestein S.P. Intracisternal antisense oligonucleotide to growth associated protein-43 blocks the recovery-promoting effects of basic fibroblast growth factor after focal stroke. Exp Neurol. 1999;158:89–96. doi: 10.1006/exnr.1999.7101. [DOI] [PubMed] [Google Scholar]
  • [3].Sliverman E.S., Collins T. Pathways of Egr-1-mediated gene transcription in vascular biology. Am J pathol. 1999;154:665–670. doi: 10.1016/S0002-9440(10)65312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Ehrengruber M.U., Muhlebach S.G., Sohrman S., Leutenegger C.M., Lester H.A., Davidson N. Modulation of early growth response transcription factor (Egr)-dependent gene expression by using recombinant adenovirus. Gene. 2000;258:63–69. doi: 10.1016/S0378-1119(00)00445-5. [DOI] [PubMed] [Google Scholar]
  • [5].Shi T.Y., Kim M. Inhibitory effect of tumor necrosis factor-α secretion from rat astrocytes by chilbokeum. Immunoparmacol Immunotoxicol. 2001;23:97–106. doi: 10.1081/IPH-100102571. [DOI] [PubMed] [Google Scholar]
  • [6].Sakamoto K.M., Bardeleben C., Yates K.E., Raines M.A., Golde D.W., Gasson J.C. 5’upstream sequence and genomic structure of the human primary response gene, Egr-1/TIS8. Oncogene. 1991;6:867–871. [PubMed] [Google Scholar]
  • [7].Kaufmann K., Thiel G. Epidermal growth factor and platelet-derived growth factor, induce expression of Egr-1, a zinc finger transcription factor, in human malignant glioma cell. J Neurol Sci. 2001;189:83–91. doi: 10.1016/S0022-510X(01)00562-7. [DOI] [PubMed] [Google Scholar]
  • [8].Abe K., Saito H. Neurotrophic effect of basic fibroblast growth factor is mediated by the p42/p44 mitogen-activated protein kinase cascade in cultured rat cortical neurons. Dev Brain Res. 2000;122:81–85. doi: 10.1016/S0165-3806(00)00054-7. [DOI] [PubMed] [Google Scholar]
  • [9].Zathehkaja D.S., Lou M.F. Studies of the mitogen-activated protein kinase and phosphatidylinositol-3 kinase in the lens 1 the mitogentic and stress response. Exp Eye Res. 2002;74:703–717. doi: 10.1006/exer.2002.1168. [DOI] [PubMed] [Google Scholar]
  • [10].Liang H.Z., Liu Y., Ye Z.R. Growth enhancement effect of BzATP on primary cultured astrocytes from rat brain. Neurosci Bull. 2006;22:151–158. [PubMed] [Google Scholar]
  • [11].Adams D.G., Coffee R.L., Zhang H., Pelech S., Strack S., Wadzinski B.E. Positive Regulation of Raf1-MEK1/2-ERK1/2 Signaling by Protein Serine/Threonine Phosphatase 2A. J Biol Chem. 2005;280:42644–42654. doi: 10.1074/jbc.M502464200. [DOI] [PubMed] [Google Scholar]
  • [12].Andrews N.C., Faller D.V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991;19:2499. doi: 10.1093/nar/19.9.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Mattson M.P., Scheff S.W. Endogenous neuroprotection factors and traumatic brain injury: mechanisms of action and implications for therapy. J Neurotrauma. 1994;11:3–33. doi: 10.1089/neu.1994.11.3. [DOI] [PubMed] [Google Scholar]
  • [14].Kiprianova I., Schindowski K., von Bohlen u., Halbach O., Krause S., Dono R., Schwaninger M., et al. Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking FGF-2. Exp Neurol. 2004;189:252–260. doi: 10.1016/j.expneurol.2004.06.004. [DOI] [PubMed] [Google Scholar]
  • [15].Ramirez J., Finklestein S.P., Keller J., Abrams W., George M.N., Parakh T. Basic fibroblast growth factor enhances axonal sprouting after cortical injury in rats. Neuroreport. 1999;10:1201–1204. doi: 10.1097/00001756-199904260-00008. [DOI] [PubMed] [Google Scholar]
  • [16].Li Q., Stephenso D. Postischemic Administration of basic fibroblast growth factor improves sensorimotor function and reduces infarct size following permanent focal cerebral ischemia in the rat. Exp Neurol. 2002;177:531–537. doi: 10.1006/exnr.2002.7994. [DOI] [PubMed] [Google Scholar]
  • [17].Mattson M.P., Zhang Y., Bose S. Growth factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal neurons deprived of glucose. Exp Neurol. 1993;121:1–13. doi: 10.1006/exnr.1993.1066. [DOI] [PubMed] [Google Scholar]
  • [18].Cheng B., Mattson M.P. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron. 1991;7:1031–1041. doi: 10.1016/0896-6273(91)90347-3. [DOI] [PubMed] [Google Scholar]
  • [19].Santiago F.S., Lowe H.C., Day F.L., Chesterman C.N., Khachigian L.M. Early growth respose factor-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2. Am J Pathol. 1999;154:665–670. doi: 10.1016/S0002-9440(10)65341-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • ]20].Biesiada E., Razandi M., Levin E.R. Egr-1 activates basic fibroblast growth factor transcription. J Biol Chem. 1996;271:18576–18581. doi: 10.1074/jbc.271.31.18576. [DOI] [PubMed] [Google Scholar]
  • [21].Houston P., Campbell C.J., Svaren J., Milbrandt J., Braddock M. The transcriptional corepressor NAB2 block Egr-1-mediated growth factor activation and angiogenesis. Biochem Biophys Res Commun. 2001;283:480–486. doi: 10.1006/bbrc.2001.4810. [DOI] [PubMed] [Google Scholar]
  • [22].Lucerna M., Mechtcheriakova D., Kadl A., Schabbauer G., Schafer R., Gruber F., et al. NAB2, a corepression of Egr-1, inhibits vascular endothelial growth factor-mediated gene induction and angiogenic response of endothelial cell. J Bio Chem. 2003;278:11433–11440. doi: 10.1074/jbc.M204937200. [DOI] [PubMed] [Google Scholar]
  • [23].Thiel G., Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol. 2002;193:287–292. doi: 10.1002/jcp.10178. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES