Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Feb 1;23(2):107–112. doi: 10.1007/s12264-007-0015-0

N-methyl-D-aspartate receptors mediate diphosphorylation of extracellular signal-regulated kinases through Src family tyrosine kinases and Ca2+/calmodulin-dependent protein kinase II in rat hippocampus after cerebral ischemia

脑缺血时NMDA受体通过Src激酶和Ca2+/钙调蛋白依赖性蛋白激酶II调控ERKs激活

Hui-Wen Wu 1, Hong-Fu Li 2, Jun Guo 3,
PMCID: PMC5550594  PMID: 17592533

Abstract

Objective

Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia.

Methods

Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot.

Results

Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA) receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca2+/calmodulin-dependent protein kinase II (CaMKII) activities. With the inhibition of Src family tyrosine kinases or CaMKII by administration of PP2 or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated.

Conclusions

Src family tyrosine kinases and CaMKII might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade.

Keywords: cerebral ischemia, extracellular signal-regulated kinases, NMDA receptors, Src family tyrosine kinases, CaMKII

References

  • [1].Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 2001;69:369–381. doi: 10.1016/S0024-3205(01)01142-0. [DOI] [PubMed] [Google Scholar]
  • [2].Xia Z., Dudek H., Miranti C.K., Greenberg M.E. Calcium influx via the NMDA receptor induces immediate-early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci. 1996;16:5425–5436. doi: 10.1523/JNEUROSCI.16-17-05425.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Nicole O., Ali C., Docagne F., Plawinski L., MacKenzie E.T., Vivien D., et al. Neuroprotection mediated by glial cell linederived neurotrophic factor: involvement of a reduction of NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci. 2001;21:3024–3033. doi: 10.1523/JNEUROSCI.21-09-03024.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Guo D.J., Zhao Y.B., Chen Y.H. Effect of acupuncture on expression of GDNF and activation of MAPKs in the rat brain after focal cerebral ischemic injury. Neurosci bull. 2005;21:385–390. [Google Scholar]
  • [5].Aikawa R., Komuro I., Yamazaki T., Zou Y., Kudoh S., Tanaka M., et al. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest. 1997;100:1813–1821. doi: 10.1172/JCI119709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Crossthwaite A.J., Valli H., Williams R.J. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurons. J Neurochem. 2004;88:1127–1139. doi: 10.1046/j.1471-4159.2004.02257.x. [DOI] [PubMed] [Google Scholar]
  • [7].Salter M.W., Kalia L.V. Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci. 2004;5:317–328. doi: 10.1038/nrn1368. [DOI] [PubMed] [Google Scholar]
  • [8].Rusanescu G., Qi H., Thomas S.M., Brugge J.S., Halegoua S. Calcium influx induces neurite growth through a Src-Ras signaling cassette. Neuron. 1995;15:1415–1425. doi: 10.1016/0896-6273(95)90019-5. [DOI] [PubMed] [Google Scholar]
  • [9].Chen H.J., Rojas-Soto M., Oguni A., Kennedy M.B. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron. 1998;20:895–904. doi: 10.1016/S0896-6273(00)80471-7. [DOI] [PubMed] [Google Scholar]
  • [10].Miyabe T., Miletic V. Multiple kinase pathways mediate the early sciatic ligation-associated activation of CREB in the rat spinal dorsal horn. Neurosci Lett. 2005;381:80–85. doi: 10.1016/j.neulet.2005.02.001. [DOI] [PubMed] [Google Scholar]
  • [11].Knuesel I., Elliott A., Chen H.J., Mansuy I.M., Kennedy M.B. A role for synGAP in regulating neuronal apoptosis. Eur J Neurosci. 2005;21:611–621. doi: 10.1111/j.1460-9568.2005.03908.x. [DOI] [PubMed] [Google Scholar]
  • [12].Zalewska T., Domanska-Janik K. Brain ischaemia transiently activates Ca2+/calmodulin-independent protein kinase II. Neuroreport. 1996;7:637–641. doi: 10.1097/00001756-199601310-00062. [DOI] [PubMed] [Google Scholar]
  • [13].Guo J., Meng F.J., Zhang G.Y., Song B. Cerebral ischemia induced phosphorylation of c-Src and its combination with Pyk2 and the inhibitory effect of ketamine in rat hippocampus. Chin J Neurosci. 2003;19:303–307. [Google Scholar]
  • [14].Bradford M.M. A rapid and sensitive for the quantitation of microgram quantitities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  • [15].Hanafusa H., Torii S., Yasunaga T., Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol. 2002;4:850–858. doi: 10.1038/ncb867. [DOI] [PubMed] [Google Scholar]
  • [16].Li X., Brunton V.G., Burgar H.R., Wheldon L.M., Heath J.K. FRS2-dependent SRC activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity. J Cell Sci. 2004;117(Pt25):6007–6017. doi: 10.1242/jcs.01519. [DOI] [PubMed] [Google Scholar]
  • [17].Kato R., Nonami A., Taketomi T., Wakioka T., Kuroiwa A., Matsuda Y., et al. Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. Biochem Biophys Res Commun. 2003;302:767–772. doi: 10.1016/S0006-291X(03)00259-6. [DOI] [PubMed] [Google Scholar]
  • [18].Chandler L.J., Sutton G., Dorairaj N.R., Norwood D. N-methyl-D-aspartate receptor-mediated bidirectional control of extracellular signal-regulated kinase activity in cortical neuronal cultures. J Biol Chem. 2001;276:2627–2636. doi: 10.1074/jbc.M003390200. [DOI] [PubMed] [Google Scholar]
  • [19].Choe E.S., Wang J.Q. CaMKII regulates amphetamine-induced ERK1/2 phosphorylation in striatal neurons. Neuroreport. 2002;13:1013–1016. doi: 10.1097/00001756-200206120-00006. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES