Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Feb 1;23(2):119–124. doi: 10.1007/s12264-007-0017-y

Inhibition of the MAPK/ERK cascade: a potential transcription-dependent mechanism for the amnesic effect of anesthetic propofol

MAPK/ERK 的抑制作用: 丙泊酚导致失忆的一个可能的转录依赖性机制

Eugene E Fibuch 1, John Q Wang 1,
PMCID: PMC5550596  PMID: 17592535

Abstract

Intravenous anesthetics are known to cause amnesia, but the underlying molecular mechanisms remain elusive. To identify a possible molecular mechanism, we recently turned our attention to a key intracellular signaling pathway organized by a family of mitogen-activated protein kinases (MAPKs). As a prominent synapse-to-nucleus superhighway, MAPKs couple surface glutamate receptors to nuclear transcriptional events essential for the development and/or maintenance of different forms of synaptic plasticity (long-term potentiation and long-term depression) and memory formation. To define the role of MAPK-dependent transcription in the amnesic property of anesthetics, we conducted a series of studies to examine the effect of a prototype intravenous anesthetic propofol on the MAPK response to N-methyl-Daspartate receptor (NMDAR) stimulation in hippocampal neurons. Our results suggest that propofol possesses the ability to inhibit NMDAR-mediated activation of a classic subclass of MAPKs, extracellular signal-regulated protein kinase 1/2 (ERK1/2). Concurrent inhibition of transcriptional activity also occurs as a result of inhibited responses of ERK1/2 to NMDA. These findings provide first evidence for an inhibitory modulation of the NMDAR-MAPK pathway by an intravenous anesthetic and introduce a new avenue to elucidate a transcription-dependent mechanism processing the amnesic effect of anesthetics.

Keywords: glutamate, NMDA, long-term potentiation, Elk, cyclic AMP response element-binding protein, c-fos proteins, hippocampus, propofol

References

  • [1].Peyssonnaux C., Eychene A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell. 2001;93:53–62. doi: 10.1016/S0248-4900(01)01125-X. [DOI] [PubMed] [Google Scholar]
  • [2].Wang J.Q., Tang Q., Samdani S., Liu Z., Parelkar N.K., Choe E.S., Yang L., Mao L. Glutamate signaling to Ras-MAPK in striatal neurons: mechanisms for inducible gene expression and plasticity. Mol Neurobiol. 2004;29:1–14. doi: 10.1385/MN:29:1:01. [DOI] [PubMed] [Google Scholar]
  • [3].Wang J.Q., Fibuch E.E., Mao L. Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem. 2007;100:1–11. doi: 10.1111/j.1471-4159.2006.04208.x. [DOI] [PubMed] [Google Scholar]
  • [4].Perkinton M.S., Ip J.K., Wood G.L., Crossthwaite A.J., Williams R.J. Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurons. J Neurochem. 2002;80:239–254. doi: 10.1046/j.0022-3042.2001.00699.x. [DOI] [PubMed] [Google Scholar]
  • [5].Krapivinsky G., Krapivinsky L., Manasian Y., Ivanov A., Tyzio R., Pellegrino C., Ben-Ari Y., Clapham D.E., Medina I. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron. 2003;40:775–784. doi: 10.1016/S0896-6273(03)00645-7. [DOI] [PubMed] [Google Scholar]
  • [6].Sgambato V., Vanhoutte P., Pages C., Rogard M., Hipskind R., Besson M.J., Caboche J. In vivo expression and regulation of Elk-1, a target of the extracellular-regulated kinase signaling pathway, in the adult rat brain. J Neurosci. 1998;18:214–226. doi: 10.1523/JNEUROSCI.18-01-00214.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Mao L., Tang Q., Samdani S., Liu Z., Wang J.Q. Regulation of MAPK/ERK phosphorylation via ionotropic glutamate receptors in cultured rat striatal neurons. Eur J Neurosci. 2004;19:1207–1216. doi: 10.1111/j.1460-9568.2004.03223.x. [DOI] [PubMed] [Google Scholar]
  • [8].Sweatt J.D. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 2004;14:311–317. doi: 10.1016/j.conb.2004.04.001. [DOI] [PubMed] [Google Scholar]
  • [9].Thomas G.M., Huganir R.L. MAPK cascade signaling and synaptic plasticity. Nature Rev Neurosci. 2004;5:173–183. doi: 10.1038/nrn1346. [DOI] [PubMed] [Google Scholar]
  • [10].Malenka R.C. The long-term potential of LTP. Nat Rev Neurosci. 2003;4:923–926. doi: 10.1038/nrn1258. [DOI] [PubMed] [Google Scholar]
  • [11].Yin J.C., Wallach J.S., Del Vecchio M., Wilder E.L., Zhou H., Quinn W.G., Tully T. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell. 1994;79:49–58. doi: 10.1016/0092-8674(94)90399-9. [DOI] [PubMed] [Google Scholar]
  • [12].Kozzin J., Mao L., Yang L., Arora A., Fibuch E.E., Wang J.Q. Inhibition of glutamatergic activation of extracellular signal-regulated protein kinases in hippocampal neurons by the intravenous anesthetic propofol. Anesthesiology. 2006;105:1182–1191. doi: 10.1097/00000542-200612000-00018. [DOI] [PubMed] [Google Scholar]
  • [13].Sanou J., Ilboudo D., Goodall G., Bourdalle-Badie C., Erny P. Evaluation of cognitive functions after anesthesia with propofol. Ann Fr Anesth Reanim. 1996;15:1155–1161. doi: 10.1016/s0750-7658(97)85872-8. [DOI] [PubMed] [Google Scholar]
  • [14].Wei H., Xiong W., Yang S., Zhou Q., Liang C., Zeng B.X., Xu L. Propofol facilitates the development of long-term depression (LTD) and impairs the maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus of anesthetized rats. Neurosci Lett. 2002;324:181–184. doi: 10.1016/S0304-3940(02)00183-0. [DOI] [PubMed] [Google Scholar]
  • [15].Takamatsu I., Sekiguchi M., Wada K., Sato T., Ozaki M. Propofolmediated impairment of CA1 long-term potentiation in mouse hippocampal slices. Neurosci Lett. 2005;389:129–132. doi: 10.1016/j.neulet.2005.07.043. [DOI] [PubMed] [Google Scholar]
  • [16].Nagashima K., Zorumski C.F., Izumi Y. Propofol inhibits longterm potentiation but not long-term depression in rat hippocampal neurons. Anesthesiology. 2005;103:318–326. doi: 10.1097/00000542-200508000-00015. [DOI] [PubMed] [Google Scholar]
  • [17].Leslie K., Sessler D.I., Schroeder M., Walters K. Propofol blood concentration and the Bispectral Index predict suppression of learning during propofol/epidural anesthesia in volunteers. Anesth Analg. 1995;81:1269–1274. doi: 10.1097/00000539-199512000-00025. [DOI] [PubMed] [Google Scholar]
  • [18].Veselis R.A., Reinsel R.A., Feshchenko V.A., Wronski M. The comparative amnestic effects of midazolam, propofol, thiopental, and fentanyl at equisedative concentrations. Anesthesiology. 1997;87:749–764. doi: 10.1097/00000542-199710000-00007. [DOI] [PubMed] [Google Scholar]
  • [19].Tingley W.G., Ehlers M.D., Kameyama K., Doherty C., Ptak J.B., Riley C.T., Huganir R.L. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-Daspartate receptor NR1 subunit using phosphorylation sitespecific antibodies. J Biol Chem. 1997;272:5157–5166. doi: 10.1074/jbc.272.8.5157. [DOI] [PubMed] [Google Scholar]
  • [20].Wang J.Q., Liu X., Zhang G., Parelkar N.K., Arora A., Haines M., Fibuch E.E., Mao L. Phosphorylation of glutamate receptors: a potential mechanism for the regulation of receptor function and psychostimulant action. J Neurosci Res. 2006;84:1621–1629. doi: 10.1002/jnr.21050. [DOI] [PubMed] [Google Scholar]
  • [21].Kingston S., Mao L., Yang L., Arora A., Fibuch E.E., Wang J.Q. Propofol inhibits phosphorylation on N-methyl-D-aspartate receptor NR1 subunits in neurons. Anesthesiology. 2006;104:763–769. doi: 10.1097/00000542-200604000-00021. [DOI] [PubMed] [Google Scholar]
  • [22].Vanhoutte P., Barnier J.V., Guibert B., Pages C., Besson M.J., Hipskind R.A., Caboche J. Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol Cell Biol. 1999;19:136–146. doi: 10.1128/mcb.19.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Rajadhyaksha A., Barczak A., Macias W., Leveque J.C., Lewis S.E., Konradi C. L-type Ca2+ channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons. J Neurosci. 1999;19:6348–6359. doi: 10.1523/JNEUROSCI.19-15-06348.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Yang L., Mao L., Tang Q., Samdani S., Liu Z., Wang J.Q. A novel Ca2+-independent signaling pathway to extracellular signal-regulated protein kinase by coactivation of NMDA receptors and metabotropic glutamate receptor 5 in neurons. J Neurosci. 2004;24:10846–10857. doi: 10.1523/JNEUROSCI.2496-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES