Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Feb 3;23(6):323–328. doi: 10.1007/s12264-007-0048-4

Effect of acetylcholine on pain-related electric activities in hippocampal CA1 area of normal and morphinistic rats

ACh 对正常大鼠和吗啡成瘾大鼠海马 CA1 区痛反应电活动的影响

Yu Xiao 1, Xiao-Fang Yang 1, Man-Ying Xu 1,
PMCID: PMC5550645  PMID: 18064061

Abstract

Objective

To examine the effect of acetylcholine (ACh) on the electric activities of pain-excitation neurons (PEN) and pain-inhibitation neurons (PIN) in the hippocampal CA1 area of normal rats or morphinistic rats, and to explore the role of ACh in regulation of pain perception in CA1 area under normal condition and morphine addiction.

Methods

The trains of electric impulses applied to sciatic nerve were set as noxious stimulation. The discharges of PEN and PIN in the CA1 area were recorded extracellularly by glass microelectrode. We observed the influence of intracerebroventricular (i.c.v.) injection of ACh and atropine on the noxious stimulation-evoked activities of PEN and PIN in the CA1 area.

Results

Noxious stimulation enhanced the electric activity of PEN and depressed that of PIN in the CA1 area of both normal and addiction rats. In normal rats, ACh decrease the pain-evoked discharge frequency of PEN, while increased the frequency of PIN. These effects reached the peak value at 4 min after injection of ACh. In morphinistic rats, ACh also inhibited the PEN electric activity and potentialized the PIN electric activity, but the maximum effect appeared at 6 min after administration. The ACh-induced responses were significantly blocked by muscarinic receptor antagonist atropine.

Conclusion

Cholinergic neurons and muscarinic receptors in the hippocampal CA1 area are involved in the processing of nociceptive information and they may play an analgesia role in pain modulation. Morphine addiction attenuated the sensitivity of painrelated neurons to the noxious information.

Keywords: acetylcholine, hippocampal CA1 area, morphine, electric activity

References

  • [1].Dong Z., Cao J., Xu L. Opiate withdrawal modifies synaptic plasticity in subicular-nucleus accumbens pathway in vivo. Neuroscience. 2007;144:845–854. doi: 10.1016/j.neuroscience.2006.10.018. [DOI] [PubMed] [Google Scholar]
  • [2].Pu L., Bao G.B., Xu N.J., Ma L., Pei G. Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci. 2002;22:1914–1921. doi: 10.1523/JNEUROSCI.22-05-01914.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Bird G.C., Han J.S., Fu Y., Adwanikar H., Willis W.D., Neugebauer V. Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP. Mol Pain. 2006;2:31–42. doi: 10.1186/1744-8069-2-31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Ikeda R., Takahashi Y., Inoue K., Kato F. NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain. 2007;127:161–172. doi: 10.1016/j.pain.2006.09.003. [DOI] [PubMed] [Google Scholar]
  • [5].Khanna S., Chang L.S., Jiang F., Koh H.C. Nociception-driven decreased induction of Fos protein in ventral hippocampus field CA1 of the rat. Brain Res. 2004;1004:167–176. doi: 10.1016/j.brainres.2004.01.026. [DOI] [PubMed] [Google Scholar]
  • [6].Soleimannejad E., Semnanian S., Fathollahi Y., Naghdi N. Microinjection of ritanserin into the dorsal hippocampal CA1 and dentate gyrus decrease nociceptive behavior in adult male rat. Behav Brain Res. 2006;168:221–225. doi: 10.1016/j.bbr.2005.11.011. [DOI] [PubMed] [Google Scholar]
  • [7].Soleimannejad E., Naghdi N., Semnanian S., Fathollahi Y., Kazemnejad A. Antinociceptive effect of intra-hippocampal CA1 and dentate gyrus injection of MK801 and AP5 in the formalin test in adult male rats. Eur J Pharmacol. 2007;562:39–46. doi: 10.1016/j.ejphar.2006.11.051. [DOI] [PubMed] [Google Scholar]
  • [8].Abelson K.S., Höglund A.U. Intravenously administered oxotremorine and atropine, in doses known to affect pain threshold, affect the intraspinal release of acetylcholine in rats. Pharmacol Toxicol. 2002;l90:187–192. doi: 10.1034/j.1600-0773.2002.900403.x. [DOI] [PubMed] [Google Scholar]
  • [9].Taguchi K., Kato M., Kikuta J., Abe K., Chikuma T., Utsunomiya I., et al. The effects of morphine-induced increases in extracellular acetylcholine levels in the rostral ventrolateral medulla of rat. J Pharmacol Exp Ther. 1999;289:1539–1544. [PubMed] [Google Scholar]
  • [10].Hikida T., Kitabatake Y., Pastan I., Nakanishi S. Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine. Proc Natl Acad Sci USA. 2003;100:6169–6173. doi: 10.1073/pnas.0631749100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Ceccarelli I., Masi F., Fiorenzani P., Aloisi A.M. Sex differences in the citrus lemon essential oil-induced increase of hippocampal acetylcholine release in rats exposed to a persistent painful stimulation. Neurosci Lett. 2002;330:25–28. doi: 10.1016/S0304-3940(02)00717-6. [DOI] [PubMed] [Google Scholar]
  • [12].Gazyakan E., Hennegriff M., Haaf A., Landwehrmeyer G.B., Feuerstein T.J., Jackisch R. Characterization of opioid receptor types modulating acetylcholine release in septal regions of the rat brain. Naunyn Schmiedebergs Arch Pharmacol. 2000;362:32–40. doi: 10.1007/s002100000253. [DOI] [PubMed] [Google Scholar]
  • [13].Zhao C.Y., Yan L.X., Lu N., Zhang J.Y., Xu M.Y. Making the model quickly for morphinomania in rats. J Harbin Med Univ. 2001;35:257–258. [Google Scholar]
  • [14].Paxinos G., Watson G. The Rat Brain in Stererotaxic Coordinates. 2. San Diego: Academic Press; 1979. pp. 81–85. [Google Scholar]
  • [15].McKenna J.E., Melzack R. Blocking NMDA receptors in the hippocampal dentate gyrus with AP5 produces analgesia in the formalin pain test. Exp Neurol. 2001;172:92–99. doi: 10.1006/exnr.2001.7777. [DOI] [PubMed] [Google Scholar]
  • [16].Zheng F., Khanna S. Hippocampal field CA1 interneuronal nociceptive responses: modulation by medial septal region and morphine. Neuroscience. 1999;93:45–55. doi: 10.1016/S0306-4522(99)00119-0. [DOI] [PubMed] [Google Scholar]
  • [17].Echeverry M.B., Guimaraes F.S., Oliveira M.A., do Prado W.A., Del Bel E.A. Delayed stress-induced antinociceptive effect of nitric oxide synthase inhibition in the dentate gyrus of rats. Pharmacol Biochem Behav. 2002;74:149–156. doi: 10.1016/S0091-3057(02)00964-4. [DOI] [PubMed] [Google Scholar]
  • [18].Pinardi G., Sierralta F., Miranda H.F. Atropine reverses the antinociception of nonsteroidal anti-inflammatory drugs in the tail-flick test of mice. Pharmacol Biochem Behav. 2003;74:603–608. doi: 10.1016/S0091-3057(02)01046-8. [DOI] [PubMed] [Google Scholar]
  • [19].Khanna S., Sinclair J.G. Responses in the CA1 region of the rat hippocampus to a noxious stimulus. Exp Neurol. 1992;117:28–35. doi: 10.1016/0014-4886(92)90107-2. [DOI] [PubMed] [Google Scholar]
  • [20].Levey A.I., Edmunds S.M., Koliatsos V., Wiley R.G., Heilman C.J. Expression of ml-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci. 1995;15:4077–4092. doi: 10.1523/JNEUROSCI.15-05-04077.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Widmer H., Ferrigan L., Davies C.H., Cobb S.R. Evoked slow muscarinic acetylcholinergic synaptic potentials in rat hippocampal interneurons. Hippocampus. 2006;16:617–628. doi: 10.1002/hipo.20191. [DOI] [PubMed] [Google Scholar]
  • [22].Holland L.N., Shuster L.C., Buccafusco J.J. Role of spinal and superspinal muscarinic receptor in the expression of morphine withdrawal symptoms in the rat. Neuropharmcology. 1993;32:1387–1395. doi: 10.1016/0028-3908(93)90035-2. [DOI] [PubMed] [Google Scholar]
  • [23].Mulugeta E., El-Bakri N., Karlsson E., Elhassan A., Adem A. Loss of muscarinic M4 receptors in spinal cord of arthritic rats: implications for a role of M4 receptors in pain response. Brain Res. 2003;982:284–287. doi: 10.1016/S0006-8993(03)03025-7. [DOI] [PubMed] [Google Scholar]
  • [24].Fukamauchi F., Saunders P.A., Hough C., Chuang D.M. Agonistinduced down-regulation and antagonist-induced up-regulation of m2-and m3-muscarinic receptor mRNA and protein in cultured cerebellar granule cells. Mol Pharmacol. 1993;44:940–949. [PubMed] [Google Scholar]
  • [25].Ma X.F., Duan-Mu Z.X., Yin Q.Z. Effects of morphine on muscarinic receptors in limbic system in acute adjuvant-induced arthritic rats. Acta Pharmacol Sin. 1993;14:421–423. [PubMed] [Google Scholar]
  • [26].Zhang R.L., Ye M.J., Guo X.S., Pan M., Du B.G., Hao W., et al. Changes of ultrastructures of neurons in nucleus accumbens, hippocampal CA1 of chronic morphine treated rats. J Zhengzhou Uni Med Sci. 2005;40:1049–1051. [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES