Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Feb 3;23(6):370–376. doi: 10.1007/s12264-007-0055-5

ATP-sensitive potassium channels: novel potential roles in Parkinson’s disease

ATP 敏感性钾通道在帕金森病中的作用

Jie Zeng 1, Gang Wang 1, Sheng-Di Chen 1,2,
PMCID: PMC5550652  PMID: 18064068

Abstract

The ATP-sensitive potassium (KATP) channels which extensively distribute in diverse tissues (e.g. vascular smooth muscle, cardiac cells, and pancreas) are well-established for characteristics like vasodilatation, myocardial protection against ischemia, and insulin secretion. The aim of this review is to get insight into the novel roles of KATP channels in Parkinson’s disease (PD), with consideration of the specificities KATP channels in the central nervous system (CNS), such as the control of neuronal excitability, action potential, mitochondrial function and neurotransmitter release.

Keywords: ATP-sensitive potassium (KATP) channels, Parkinson’s disease

Footnotes

The authors contributed equally to this work.

References

  • [1].Wang G., Zhu Y., Kong D.H., Chen S.D. Some progress about channelopathies. Progress in Physiological Sciences. 2004;35:251–254. [PubMed] [Google Scholar]
  • [2].Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983;305:147–148. doi: 10.1038/305147a0. [DOI] [PubMed] [Google Scholar]
  • [3].Ashcroft S.J., Ashcroft F.M. Properties and functions of ATP-sensitive K-channels. Cell Signal. 1990;2:197–214. doi: 10.1016/0898-6568(90)90048-F. [DOI] [PubMed] [Google Scholar]
  • [4].Nichols C.G. KATP channels as molecular sensors of cellular metabolism. Nature. 2006;440:470–476. doi: 10.1038/nature04711. [DOI] [PubMed] [Google Scholar]
  • [5].Karschin C., Ecke C., Ashcroft F.M., Karschin A. Overlapping distribution of KATP channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 1997;401:59–64. doi: 10.1016/S0014-5793(96)01438-X. [DOI] [PubMed] [Google Scholar]
  • [6].Antcliff J.F., Haider S., Proks P., Sansom M.S., Ashcroft F.M. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J. 2005;24:229–239. doi: 10.1038/sj.emboj.7600487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Thomzig A., Prüss H., Veh R.W. The Kir6.1-protein, a poreforming subunit of ATP-sensitive potassium channels, is prominently expressed by giant cholinergic interneurons in the striatum of the rat brain. Brain Res. 2003;986:132–138. doi: 10.1016/S0006-8993(03)03222-0. [DOI] [PubMed] [Google Scholar]
  • [8].Holemans S., Javoy-Agid F., Agid Y., De Paermentier F., Laterre E.C., Maloteaux J.M. Sulfonylurea binding sites in normal human brain and in Parkinson’s disease, progressive supranuclear palsy and Huntington’s disease. Brain Res. 1994;642:327–333. doi: 10.1016/0006-8993(94)90938-5. [DOI] [PubMed] [Google Scholar]
  • [9].Minami K., Miki T., Kadowaki T., Seino S. Roles of ATP-sensitive K+ channels as metabolic sensors: studies of Kir6.x null mice. Diabetes. 2004;53(Suppl3):176–180. doi: 10.2337/diabetes.53.suppl_3.S176. [DOI] [PubMed] [Google Scholar]
  • [10].Miki T., Seino S. Roles of KATP channels as metabolic sensors in acute metabolic changes. J Mol Cell Cardiol. 2005;38:917–925. doi: 10.1016/j.yjmcc.2004.11.019. [DOI] [PubMed] [Google Scholar]
  • [11].Lamensdorf I., Meiri N., Harvey-White J., Jacobowitz D.M., Kopin I.J. Kir6.2 oligoantisense administered into the globus pallidus reduces apomorphine-induced turning in 6-OHDA hemiparkinsonian rats. Brain Res. 1999;818:275–284. doi: 10.1016/S0006-8993(98)01290-6. [DOI] [PubMed] [Google Scholar]
  • [12].Hartmann A., Troadec J.D., Hunot S., Kikly K., Faucheux B.A., Mouatt-Prigent A., et al. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci. 2001;21:2247–2255. doi: 10.1523/JNEUROSCI.21-07-02247.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Yuan H., Zheng J.C., Liu P., Zhang S.F., Xu J.Y., Bai L.M. Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull. 2007;23:125–130. doi: 10.1007/s12264-007-0018-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Martin L.J. Mitochondriopathy in Parkinson disease and amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 2006;65:1103–1110. doi: 10.1097/01.jnen.0000248541.05552.c4. [DOI] [PubMed] [Google Scholar]
  • [15].Wu J., Hu J., Chen Y.P., Takeo T., Suga S., Dechon J., et al. Iptakalim modulates ATP-sensitive K+ channels in dopamine neurons from rat substantia nigra pars compacta. J Pharmacol Exp Ther. 2006;319:155–164. doi: 10.1124/jpet.106.106286. [DOI] [PubMed] [Google Scholar]
  • [16].Tai K.K., McCrossan Z.A., Abbott G.W. Activation of mitochondrial ATP-sensitive potassium channels increases cell viability against rotenone-induced cell death. J Neurochem. 2003;84:1193–1200. doi: 10.1046/j.1471-4159.2003.01625.x. [DOI] [PubMed] [Google Scholar]
  • [17].Liu D., Lu C., Wan R., Auyeung W.W., Mattson M.P. Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab. 2002;22:431–443. doi: 10.1097/00004647-200204000-00007. [DOI] [PubMed] [Google Scholar]
  • [18].Tai K.K., Truong D.D. Activation of adenosine triphosphate-sensitive potassium channels confers protection against rotenone-induced cell death: therapeutic implications for Parkinson’s disease. J Neurosci Res. 2002;69:559–566. doi: 10.1002/jnr.10309. [DOI] [PubMed] [Google Scholar]
  • [19].Garlid K.D. Cation transport in mitochondria-the potassium cycle. Biochim Biophys Acta. 1996;1275:123–126. doi: 10.1016/0005-2728(96)00061-8. [DOI] [PubMed] [Google Scholar]
  • [20].Nicholls D.G., Budd S.L. Mitochondria and neuronal survival. Physiol Rev. 2000;80:315–360. doi: 10.1152/physrev.2000.80.1.315. [DOI] [PubMed] [Google Scholar]
  • [21].Avshalumov M.V., Chen B.T., Koós T., Tepper J.M., Rice M.E. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci. 2005;25:4222–4231. doi: 10.1523/JNEUROSCI.4701-04.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Avshalumov M.V., Bao L., Patel J.C., Rice M.E. H2O2 signaling in the nigrostriatal dopamine pathway via ATP-sensitive potassium channels: issues and answers. Antioxid Redox Signal. 2007;9:219–231. doi: 10.1089/ars.2007.9.219. [DOI] [PubMed] [Google Scholar]
  • [23].Vu C.C.Q., Bortner C.D., Cidlowski J.A. Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas-and UV-induced cell death. J Biol Chem. 2001;276:37602–37611. doi: 10.1074/jbc.M104810200. [DOI] [PubMed] [Google Scholar]
  • [24].Milton S.L., Lutz P.L. Adenosine and ATP-sensitive potassium channels modulate dopamine release in the anoxic turtle (Trachemys scripta) striatum. Am J Physiol Regul Integr Comp Physiol. 2005;289:R77–R83. doi: 10.1152/ajpregu.00647.2004. [DOI] [PubMed] [Google Scholar]
  • [25].Haider S., Antcliff J.F., Proks P., Sansom M.S., Ashcroft F.M. Focus on Kir6.2: a key component of the ATP-sensitive potassium channel. J Mol Cell Cardiol. 2005;38:927–936. doi: 10.1016/j.yjmcc.2005.01.007. [DOI] [PubMed] [Google Scholar]
  • [26].Steinkamp M., Li T., Fuellgraf H., Moser A. KATP-dependent neurotransmitter release in the neuronal network of the rat caudate nucleus. Neurochem Int. 2007;50:159–163. doi: 10.1016/j.neuint.2006.07.011. [DOI] [PubMed] [Google Scholar]
  • [27].Liss B., Haeckel O., Wildmann J., Miki T., Seino S., Roeper J. KATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci. 2005;8:1742–1751. doi: 10.1038/nn1570. [DOI] [PubMed] [Google Scholar]
  • [28].Armstead W.M., Hecker J.G. Heat shock protein modulation of KATP and KCa channel cerebrovasodilation after brain injury. Am J Physiol Heart Circ Physiol. 2005;289:H1184–H1190. doi: 10.1152/ajpheart.00276.2005. [DOI] [PubMed] [Google Scholar]
  • [29].Neusch C., Weishaupt J.H., Bähr M. Kir channels in the CNS: emerging new roles and implications for neurological diseases. Cell Tissue Res. 2003;311:131–138. doi: 10.1007/s00441-002-0669-x. [DOI] [PubMed] [Google Scholar]
  • [30].Deutch A.Y., Winder D.G. A channel to neurodegeneration. Nat Med. 2006;12:17–18. doi: 10.1038/nm0106-17. [DOI] [PubMed] [Google Scholar]
  • [31].Lawson K. Is there a role for potassium channel openers in neuronal ion channel disorders? Expert Opin Investig Drugs. 2000;9:2269–2280. doi: 10.1517/13543784.9.10.2269. [DOI] [PubMed] [Google Scholar]
  • [32].Lawson K. Potassium channel activation: a potential therapeutic approach? Pharmacol Ther. 1996;70:39–63. doi: 10.1016/0163-7258(96)00003-4. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES