Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 Feb 3;23(6):377–382. doi: 10.1007/s12264-007-0056-4

How to improve the survival of the fetal ventral mesencephalic cell transplanted in Parkinson’s disease?

如何提高帕金森病中脑细胞移植中的细胞存活率?

Jia Liu 1, Hong-Yun Huang 1,
PMCID: PMC5550653  PMID: 18064069

Abstract

It has been extensively confirmed that fetal ventral mesencephalic cell (VMC) transplantation can ameliorate the symptoms of Parkinson’s disease (PD). But there are still several problems to be resolved before the extensive clinical application of this technology. The major limitations are the poor survival of grafted dopamine (DA) neurons and restricted dopaminergic reinnervation of host striatum. Some attempts have been made to solve these problems including use of some trophic factor and co-transplantation with neural/paraneural origins. The purpose of this review is to overview advances of the means improving the survival of grafts and their current limitations.

Keywords: Parkinson’s disease, cell transplantation

References

  • [1].Lindvall O., Bjorklund A. Cell Therapy in Parkinson’s Disease. NeuroRx. 2004;1:382–393. doi: 10.1602/neurorx.1.4.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Goren B., Kahveci N., Eyigor O., Alkan T., Korfali E., Ozluk K. Effects of intranigral vs intrastriatal fetal mesencephalic neural grafts on motor behavior disorders in a rat Parkinson model. Surg Neurol. 2005;64(Suppl2):S33–S41. doi: 10.1016/j.surneu.2005.07.038. [DOI] [PubMed] [Google Scholar]
  • [3].Collier T.J., Sortwell C.E., Elsworth J.D., Taylor J.R., Roth R.H., Sladek J.R., Jr, et al. Embryonic ventral mesencephalic grafts to the substantia nigra of MPTP-treated monkeys: feasibility relevant to multiple-target grafting as a therapy for Parkinson’s disease. J Comp Neurol. 2002;442:320–330. doi: 10.1002/cne.10108. [DOI] [PubMed] [Google Scholar]
  • [4].Olanow C.W., Goetz C.G., Kordower J.H., Stoessl A.J., Sossi V., Brin M.F., et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54:403–414. doi: 10.1002/ana.10720. [DOI] [PubMed] [Google Scholar]
  • [5].Freed C.R., Greene P.E., Breeze R.E., Tsai W.Y., DuMouchel W., Kao R., et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344:710–719. doi: 10.1056/NEJM200103083441002. [DOI] [PubMed] [Google Scholar]
  • [6].Duan W.M., Zhao L.R., Westerman M., Lovick D., Furcht L.T., McCarthy J.B., et al. Enhancement of nigral graft survival in rat brain with the systemic administration of synthetic fibronectin peptide V. Neuroscience. 2000;100:521–530. doi: 10.1016/S0306-4522(00)00299-2. [DOI] [PubMed] [Google Scholar]
  • [7].Sortwell C.E. Strategies for the augmentation of grafted dopamine neuron survival. Front Biosci. 2003;8:S522–S532. doi: 10.2741/1096. [DOI] [PubMed] [Google Scholar]
  • [8].Espejo M., Cutillas B., Arenas T.E., Ambrosio S. Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line-derived neurotrophic factor. Cell Transplant. 2000;9:45–53. doi: 10.1177/096368970000900107. [DOI] [PubMed] [Google Scholar]
  • [9].Dugan L.L., Lovett E.G., Quick K.L., Lotharius J., Lin T.T., O’Malley K.L. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord. 2001;7:243–246. doi: 10.1016/S1353-8020(00)00064-X. [DOI] [PubMed] [Google Scholar]
  • [10].Boll J.B., Geist M.A., Kaminski Schierle G.S., Petersen K., Leist M., Vaudano E. Improvement of embryonic dopaminergic neurone survival in culture and after grafting into the striatum of hemiparkinsonian rats by CEP-1347. J Neurochem. 2004;88:698–707. doi: 10.1046/j.1471-4159.2003.02198.x. [DOI] [PubMed] [Google Scholar]
  • [11].Johansson S., Lee I.H., Olson L., Spenger C. Olfactory enshea-thing glial co-grafts improve functional recovery in rats with 6-OHDA lesions. Brain. 2005;128(Pt12):2961–2976. doi: 10.1093/brain/awh644. [DOI] [PubMed] [Google Scholar]
  • [12].Barker R.A., Widner H. Immune problems in central nervous system cell therapy. NeuroRx. 2004;1:472–481. doi: 10.1602/neurorx.1.4.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Roussa E., Wiehle M., Dünker N., Becker-Katins S., Oehlke O., Krieglstein K. Transforming growth factor beta is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo: ectopic induction in dorsal mesencephalon. Stem Cells. 2006;24:2120–2129. doi: 10.1634/stemcells.2005-0514. [DOI] [PubMed] [Google Scholar]
  • [14].Thoenen H. The changing scene of neurotrophic factors. Trends Neurosci. 1991;14:165–170. doi: 10.1016/0166-2236(91)90097-E. [DOI] [PubMed] [Google Scholar]
  • [15].Yurek D.M., Lu W., Hipkens S., Wiegand S.J. BDNF enhances the functional reinnervation of the striatum by grafted fetal dopamine neurons. Exp Neurol. 1996;137:105–118. doi: 10.1006/exnr.1996.0011. [DOI] [PubMed] [Google Scholar]
  • [16].Yasuhara T., Shingo T., Date I. Glial cell line-derived neurotrophic factor (GDNF) therapy for Parkinson’s disease. Acta Med Okayama. 2007;61:51–56. doi: 10.18926/AMO/32888. [DOI] [PubMed] [Google Scholar]
  • [17].Roussa E., Krieglstein K. GDNF promotes neuronal differentiation and dopaminergic development of mouse mesencephalic neurospheres. Neurosci Lett. 2004;361:52–55. doi: 10.1016/j.neulet.2003.12.106. [DOI] [PubMed] [Google Scholar]
  • [18].Chaturvedi R.K., Agrawal A.K., Seth K., Shukla S., Chauhan S., Shukla Y., et al. Effect of glial cell line-derived neurotrophic factor (GDNF) co-transplantation with fetal ventral mesencephalic cells (VMC) on functional restoration in 6-hydroxydopamine (6-OHDA) lesioned rat model of Parkinson’s disease: neurobehavioral, neurochemical and immunohisto-chemical studies. Int J Dev Neurosci. 2003;21:391–400. doi: 10.1016/S0736-5748(03)00087-X. [DOI] [PubMed] [Google Scholar]
  • [19].Winkler C., Georgievska B., Carlsson T., Lacar B., Kirik D. Continuous exposure to glial cell line-derived neurotrophic factor to mature dopaminergic transplants impairs the graft’s ability to improve spontaneous motor behavior in parkinsonian rats. Neuroscience. 2006;141:521–531. doi: 10.1016/j.neuroscience.2006.03.068. [DOI] [PubMed] [Google Scholar]
  • [20].Masuda S., Nagao M., Sasaki R. Erythropoietic, neurotrophic, and angiogenic functions of erythropoietin and regulation of erythropoietin production. Int J Hematol. 1999;70:1–6. [PubMed] [Google Scholar]
  • [21].Juul S.E., Anderson D.K., Li Y., Christensen R.D. Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res. 1998;43:40–49. doi: 10.1203/00006450-199801000-00007. [DOI] [PubMed] [Google Scholar]
  • [22].Bernaudin M., Bellail A., Marti H.H., Yvon A., Vivien D., Duchatelle I., et al. Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia. 2000;30:271–278. doi: 10.1002/(SICI)1098-1136(200005)30:3<271::AID-GLIA6>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • [23].Csete M., Rodriguez L., Wilcox M., Chadalavada S. Erythropoietin receptor is expressed on adult rat dopaminergic neurons and erythropoietin is neurotrophic in cultured dopaminergic neuroblasts. Neurosci Lett. 2004;359:124–126. doi: 10.1016/j.neulet.2004.01.068. [DOI] [PubMed] [Google Scholar]
  • [24].Studer L., Csete M., Lee S.H., Kabbani N., Walikonis J., Wold B., et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci. 2000;20:7377–7383. doi: 10.1523/JNEUROSCI.20-19-07377.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Wojchowski D.M., Gregory R.C., Miller C.P., Pandit A.K., Pircher T.J. Signal transduction in the erythropoietin receptor system. Exp Cell Res. 1999;253:143–156. doi: 10.1006/excr.1999.4673. [DOI] [PubMed] [Google Scholar]
  • [26].McLeod M., Hong M., Mukhida K., Sadi D., Ulalia R., Mendez I. Erythropoietin and GDNF enhance ventral mesencephalic fiber outgrowth and capillary proliferation following neural transplantation in a rodent model of Parkinson’s disease. Eur J Neurosci. 2006;24:361–370. doi: 10.1111/j.1460-9568.2006.04919.x. [DOI] [PubMed] [Google Scholar]
  • [27].Bailey D.M., Robach P., Thomsen J.J., Lundby C. Erythropoietin depletes iron stores: antioxidant neuroprotection for ischemic stroke? Stroke. 2006;37:2453. doi: 10.1161/01.STR.0000239787.92203.16. [DOI] [PubMed] [Google Scholar]
  • [28].Kortekaas R., Leenders K.L., van Oostrom J.C., Vaalburg W., Bart A.T., Willemsen A.T., et al. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57:176–179. doi: 10.1002/ana.20369. [DOI] [PubMed] [Google Scholar]
  • [29].Genc K. Erythropoietin and Parkinson’s disease: Suggested mechanisms and therapeutic implications. Med Hypotheses 2007, [Epub ahead of print]. [DOI] [PubMed]
  • [30].Yurek D.M., Lu W., Hipkens S., Wiegand S.J. BDNF enhances the functional reinnervation of the striatum by grafted fetal dopamine neurons. Exp Neurol. 1996;137:105–118. doi: 10.1006/exnr.1996.0011. [DOI] [PubMed] [Google Scholar]
  • [31].Timmer M., Cesnulevicius K., Winkler C., Kolb J., Lipokatic-Takacs E., Jungnickel J., et al. Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J Neurosci. 2007;27:459–471. doi: 10.1523/JNEUROSCI.4493-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Chaturvedi R.K., Shukla S., Seth K., Agrawal A.K. Nerve growth factor increases survival of dopaminergic graft, rescue nigral dopaminergic neurons and restores functional deficits in rat model of Parkinson’s disease. Neurosci Lett. 2006;398:44–49. doi: 10.1016/j.neulet.2005.12.042. [DOI] [PubMed] [Google Scholar]
  • [33].Agrawal A.K., Chaturvedi R.K., Shukla S., Seth K., Chauhan S., Ahmad A., et al. Restorative potential of dopaminergic grafts in presence of antioxidants in rat model of Parkinson’s disease. J Chem Neuroanat. 2004;28:253–264. doi: 10.1016/j.jchemneu.2004.08.001. [DOI] [PubMed] [Google Scholar]
  • [34].Nakao N., Frodl E.M., Duan W.M., Widner H., Brundin P. Lazaroids improve the survival of grafted rat embryonic dopamine neurons. Proc Natl Acad Sci U S A. 1994;91:12408–12412. doi: 10.1073/pnas.91.26.12408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Brundin P., Pogarell O., Hagell P., Piccini P., Widner H., Schrag A., et al. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain. 2000;123(Pt7):1380–1390. doi: 10.1093/brain/123.7.1380. [DOI] [PubMed] [Google Scholar]
  • [36].Hurelbrink C.B., Armstrong R.J., Luheshi L.M., Dunnett S.B., Rosser A.E., Barker R.A. Death of dopaminergic neurons in vitro and in nigral grafts: reevaluating the role of caspase activation. Exp Neurol. 2001;171:46–58. doi: 10.1006/exnr.2001.7749. [DOI] [PubMed] [Google Scholar]
  • [37].Marchionini D.M., Collier T.J., Pitzer M.R., Sortwell C.E. Reassessment of caspase inhibition to augment grafted dopamine neuron survival. Cell Transplant. 2004;13:273–282. doi: 10.3727/000000004783983972. [DOI] [PubMed] [Google Scholar]
  • [38].Marchionini D.M., Collier T.J., Camargo M., McGuire S., Pitzer M., Sortwell C.E. Interference with anoikis-induced cell death of dopamine neurons: implications for augmenting embryonic graft survival in a rat model of Parkinson’s disease. J Comp Neurol. 2003;464:172–179. doi: 10.1002/cne.10785. [DOI] [PubMed] [Google Scholar]
  • [39].Ruitenberg M.J., Vukovic J., Sarich J., Busfield S.J., Plant G.W. Olfactory ensheathing cells: characteristics, genetic engineering, and therapeutic potential. J Neurotrauma. 2006;23:468–478. doi: 10.1089/neu.2006.23.468. [DOI] [PubMed] [Google Scholar]
  • [40].Pastrana E., Moreno-Flores M.T., Avila J., Wandosell F., Minichiello L., Diaz-Nido J. BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons. Neurochem Int. 2007;50:491–498. doi: 10.1016/j.neuint.2006.10.004. [DOI] [PubMed] [Google Scholar]
  • [41].Agrawal A.K., Shukla S., Chaturvedi R.K., Seth K., Srivastava N., Ahmad A., et al. Olfactory ensheathing cell transplantation restores functional deficits in rat model of Parkinson’s disease: a cotransplantation approach with fetal ventral mesencephalic cells. Neurobiol Dis. 2004;16:516–526. doi: 10.1016/j.nbd.2004.04.014. [DOI] [PubMed] [Google Scholar]
  • [42].Fairless R., Barnett S.C. Olfactory ensheathing cells: their role in central nervous system repair. Int J Biochem Cell Biol. 2005;37:693–699. doi: 10.1016/j.biocel.2004.10.010. [DOI] [PubMed] [Google Scholar]
  • [43].Toledo-Aral J.J., Mendez-Ferrer S., Pardal R., Lopez-Barneo J. Dopaminergic cells of the carotid body: physiological significance and possible therapeutic applications in Parkinson’s disease. Brain Res Bull. 2002;57:847–853. doi: 10.1016/S0361-9230(01)00771-7. [DOI] [PubMed] [Google Scholar]
  • [44].Shukla S., Agrawal A.K., Chaturvedi R.K., Seth K., Srivastava N., Sinha C., et al. Co-transplantation of carotid body and ventral mesencephalic cells as an alternative approach towards functional restoration in 6-hydroxydopamine-lesioned rats: implications for Parkinson’s disease. J Neurochem. 2004;91:274–284. doi: 10.1111/j.1471-4159.2004.02715.x. [DOI] [PubMed] [Google Scholar]
  • [45].Timmer M., Müller-Ostermeyer F., Kloth V., Winkler C., Grothe C., Nikkhah G. Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Exp Neurol. 2004;187:118–136. doi: 10.1016/j.expneurol.2004.01.013. [DOI] [PubMed] [Google Scholar]
  • [46].Pierret P., Quenneville N., Vandaele S., Abbaszadeh R., Lanctot C., Crine P., et al. Trophic and tropic effects of striatal astrocytes on cografted mesencephalic dopamine neurons and their axons. J Neurosci Res. 1998;51:23–40. doi: 10.1002/(SICI)1097-4547(19980101)51:1<23::AID-JNR3>3.3.CO;2-S. [DOI] [PubMed] [Google Scholar]
  • [47].Sortwell C.E., Collier T.J., Sladek J.R., Jr. Co-grafted embryonic striatum increases the survival of grafted embryonic dopamine neurons. J Comp Neurol. 1998;399:530–540. doi: 10.1002/(SICI)1096-9861(19981005)399:4<530::AID-CNE6>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  • [48].Sanberg P.R., Borlongan C.V., Othberg A.I., Saporta S., Freeman T.B., Cameron D.F. Testis-derived Sertoli cells have a trophic effect on dopamine neurons and alleviate hemiparkinsonism in rats. Nat Med. 1997;3:1129–1132. doi: 10.1038/nm1097-1129. [DOI] [PubMed] [Google Scholar]
  • [49].Chiang Y., Morales M., Zhou F.C., Borlongan C., Hoffer B.J., Wang Y. Fetal intra-nigral ventral mesencephalon and kidney tissue bridge transplantation restores the nigrostriatal dopamine pathway in hemi-parkinsonian rats. Brain Res. 2001;889:200–207. doi: 10.1016/S0006-8993(00)03133-4. [DOI] [PubMed] [Google Scholar]
  • [50].Barker R.A., Widner H. Immune problems in central nervous system cell therapy. NeuroRx. 2004;1:472–481. doi: 10.1602/neurorx.1.4.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [51].Krystkowiak P., Gaura V., Labalette M., Rialland A., Remy P., Peschanski M., et al. Alloimmunisation to donor antigens and immune rejection following foetal neural grafts to the brain in patients with Huntington’s disease. PLoS ONE. 2007;2:e166. doi: 10.1371/journal.pone.0000166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [52].Piccini P., Pavese N., Hagell P., Reimer J., Björklund A., Oertel W.H., et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain. 2005;128(Pt12):2977–2986. doi: 10.1093/brain/awh649. [DOI] [PubMed] [Google Scholar]
  • [53].Hagell P., Piccini P., Björklund A., Brundin P., Rehncrona S., Widner H., et al. Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci. 2002;5:627–628. doi: 10.1038/nn863. [DOI] [PubMed] [Google Scholar]
  • [54].Alemdar A.Y., Sadi D., McAlister V., Mendez I. Intracerebral cotransplantation of liposomal tacrolimus improves xenograft survival and reduces graft rejection in the hemiparkinsonian rat. Neuroscience. 2007;146:213–224. doi: 10.1016/j.neuroscience.2007.01.006. [DOI] [PubMed] [Google Scholar]
  • [55].Holm K.H., Cicchetti F., Bjorklund L., Boonman Z., Tandon P., Costantini L.C., et al. Enhanced axonal growth from fetal human bcl-2 transgenic mouse dopamine neurons transplanted to the adult rat striatum. Neuroscience. 2001;104:397–405. doi: 10.1016/S0306-4522(01)00098-7. [DOI] [PubMed] [Google Scholar]
  • [56].Sortwell C.E., Bowers W.J., Counts S.E., Pitzer M.R., Fleming M.F., McGuire S.O., et al. Effects of ex vivo transduction of mesencephalic reaggregates with bcl-2 on grafted dopamine neuron survival. Brain Res. 2007;1134:33–44. doi: 10.1016/j.brainres.2006.11.079. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES