Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Jun 3;26(3):175–187. doi: 10.1007/s12264-010-0308-6

Neural circuits and temporal plasticity in hindlimb representation of rat primary somatosensory cortex: revisited by multi-electrode array on brain slices

大鼠初级躯体感觉皮层后肢代表区的神经回路和时间可塑性: 平面微电极阵列记录技术的应用

Dan-Dan Wang 1, Zhen Li 2, Ying Chang 1, Rui-Rui Wang 2, Xue-Feng Chen 2, Zhen-Yu Zhao 2, Fa-Le Cao 2, Jian-Hui Jin 1, Ming-Gang Liu 1, Jun Chen 1,2,
PMCID: PMC5552489  PMID: 20502495

Abstract

Objective

The well-established planar multi-electrode array recording technique was used to investigate neural circuits and temporal plasticity in the hindlimb representation of the rat primary somatosensory cortex (S1 area).

Methods

Freshly dissociated acute brain slices of rats were subject to constant perfusion with oxygenated artificial cerebrospinal fluid (95% O2 and 5% CO2), and were mounted on a Med64 probe (64 electrodes, 8×8 array) for simultaneous multi-site electrophysiological recordings. Current sources and sinks across all the 64 electrodes were transformed into two-dimensional current source density images by bilinear interpolation at each point of the 64 electrodes.

Results

The local intracortical connection, which is involved in mediation of downward information flow across layers II–VI, was identified by electrical stimulation (ES) at layers II–III. The thalamocortical connection, which is mainly involved in mediation of upward information flow across layers II–IV, was also characterized by ES at layer IV. The thalamocortical afferent projections were likely to make more synaptic contacts with S1 neurons than the intracortical connections did. Moreover, the S1 area was shown to be more easily activated and more intensively innervated by the thalamocortical afferent projections than by the intracortical connections. Finally, bursting conditioning stimulus (CS) applied within layer IV of the S1 area could successfully induce long-term potentiation (LTP) in 5 of the 6 slices (83.3%), while the same CS application at layers II–III induced no LTP in any of the 6 tested slices.

Conclusion

The rat hindlimb representation of S1 area is likely to have at least 2 patterns of neural circuits on brain slices: one is the intracortical circuit (ICC) formed by interlaminar connections from layers II–III, and the other is the thalamocortical circuit (TCC) mediated by afferent connections from layer IV. Besides, ICC of the S1 area is spatially limited, with less plasticity, while TCC is spatially extensive and exhibits a better plasticity in response to somatosensory afferent stimulation. The present data provide a useful experimental model for further studying microcircuit properties in S1 cortex at the network level in vitro.

Keywords: planar multi-electrode array, two-dimensional current source density imaging, primary somatosensory cortex, neural circuits, long-term potentiation

References

  • [1].Knierim J. Information processing in neural networks. In: Byrne J., Roberts J., editors. From molecules to networks. Amsterdam: Elsevier Academic Press; 2009. pp. 513–537. [Google Scholar]
  • [2].Byrne J., LaBar K., LeDoux J., Schafe G., Sweatt J., Thompson R. Learning and memory: Basic mechanisms. In: Byrne J., Roberts J., editors. From molecules to networks. Amsterdam: Elsevier Academic Press; 2009. pp. 539–608. [Google Scholar]
  • [3].Mountcastle V. Perceptual neuroscience: The cerebral cortex. Cambridge: Harvard University Press; 1998. p. 486. [Google Scholar]
  • [4].Jaw F.S., Kao Y.C., Chen C.P., Liao W.L. Cerebral columnar organization of the first nociceptive component induced by CO2 laser on the tail of the rat. Neuroscience. 2009;158(2):945–950. doi: 10.1016/j.neuroscience.2008.09.046. [DOI] [PubMed] [Google Scholar]
  • [5].Salin P.A., Prince D.A. Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol. 1996;75(4):1573–1588. doi: 10.1152/jn.1996.75.4.1573. [DOI] [PubMed] [Google Scholar]
  • [6].Zhang Z.W., Deschenes M. Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci. 1997;17(16):6365–6379. doi: 10.1523/JNEUROSCI.17-16-06365.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Bodor A.L., Katona I., Nyiri G., Mackie K., Ledent C., Hajos N., et al. Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J Neurosci. 2005;25(29):6845–6856. doi: 10.1523/JNEUROSCI.0442-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Cauli B., Audinat E., Lambolez B., Angulo M.C., Ropert N., Tsuzuki K., et al. Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci. 1997;17(10):3894–3906. doi: 10.1523/JNEUROSCI.17-10-03894.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [9].Lamour Y., Guilbaud G., Willer J.C. Rat somatosensory (SmI) cortex: II. Laminar and columnar organization of noxious and non-noxious inputs. Exp Brain Res. 1983;49(1):46–54. doi: 10.1007/BF00235540. [DOI] [PubMed] [Google Scholar]
  • [10].Lamour Y., Willer J.C., Guilbaud G. Rat somatosensory (SmI) cortex: I. Characteristics of neuronal responses to noxious stimulation and comparison with responses to non-noxious stimulation. Exp Brain Res. 1983;49(1):35–45. doi: 10.1007/BF00235539. [DOI] [PubMed] [Google Scholar]
  • [11].Taketani M., Baudry M. Advances in network electrophysiology: Using multi-electrode arrays. Singapore: Springer; 2006. p. 478. [Google Scholar]
  • [12].Colgin L.L., Moser E.I. Neuroscience: rewinding the memory record. Nature. 2006;440(7084):615–617. doi: 10.1038/440615a. [DOI] [PubMed] [Google Scholar]
  • [13].Duport S., Millerin C., Muller D., Correges P. A metallic multisite recording system designed for continuous long-term monitoring of electrophysiological activity in slice cultures. Biosens Bioelectron. 1999;14(4):369–376. doi: 10.1016/S0956-5663(99)00015-9. [DOI] [PubMed] [Google Scholar]
  • [14].Hofmann F., Bading H. Long term recordings with microelectrode arrays: studies of transcription-dependent neuronal plasticity and axonal regeneration. J Physiol (Paris) 2006;99(2–3):125–132. doi: 10.1016/j.jphysparis.2005.12.005. [DOI] [PubMed] [Google Scholar]
  • [15].Morin F.O., Takamura Y., Tamiya E. Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. J Biosci Bioeng. 2005;100(2):131–143. doi: 10.1263/jbb.100.131. [DOI] [PubMed] [Google Scholar]
  • [16].Steidl E.M., Neveu E., Bertrand D., Buisson B. The adult rat hippocampal slice revisited with multi-electrode arrays. Brain Res. 2006;1096(1):70–84. doi: 10.1016/j.brainres.2006.04.034. [DOI] [PubMed] [Google Scholar]
  • [17].van Bergen A., Papanikolaou T., Schuker A., Moller A., Schlosshauer B. Long-term stimulation of mouse hippocampal slice culture on microelectrode array. Brain Res Protoc. 2003;11(2):123–133. doi: 10.1016/S1385-299X(03)00024-2. [DOI] [PubMed] [Google Scholar]
  • [18].Shimono K., Brucher F., Granger R., Lynch G., Taketani M. Origins and distribution of cholinergically induced beta rhythms in hippocampal slices. J Neurosci. 2000;20(22):8462–8473. doi: 10.1523/JNEUROSCI.20-22-08462.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Shimono K., Kubota D., Brucher F., Taketani M., Lynch G. Asymmetrical distribution of the Schaffer projections within the apical dendrites of hippocampal field CA1. Brain Res. 2002;950(1–2):279–287. doi: 10.1016/S0006-8993(02)03052-4. [DOI] [PubMed] [Google Scholar]
  • [20].Zhao X.Y., Liu M.G., Yuan D.L., Wang Y., He Y., Wang D.D., et al. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording. Mol Pain. 2009;5:55. doi: 10.1186/1744-8069-5-55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Krause M., Jia Y. Serotonergic modulation of carbachol-induced rhythmic activity in hippocampal slices. Neuropharmacology. 2005;48(3):381–390. doi: 10.1016/j.neuropharm.2004.10.011. [DOI] [PubMed] [Google Scholar]
  • [22].Oka H., Shimono K., Ogawa R., Sugihara H., Taketani M. A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods. 1999;93(1):61–67. doi: 10.1016/S0165-0270(99)00113-2. [DOI] [PubMed] [Google Scholar]
  • [23].He Y., Liu M.G., Gong K.R., Chen J. Differential effects of long and short train theta burst stimulation on LTP induction in rat anterior cingulate cortex slices: multi-electrode array recordings. Neurosci Bull. 2009;25(5):309–318. doi: 10.1007/s12264-009-0831-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Agmon A., Connors B.W. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience. 1991;41(2–3):365–379. doi: 10.1016/0306-4522(91)90333-J. [DOI] [PubMed] [Google Scholar]
  • [25].Kotter R., Staiger J.F., Zilles K., Luhmann H.J. Analysing functional connectivity in brain slices by a combination of infrared video microscopy, flash photolysis of caged compounds and scanning methods. Neuroscience. 1998;86(1):265–277. doi: 10.1016/S0306-4522(98)00010-4. [DOI] [PubMed] [Google Scholar]
  • [26].Bakker R., Schubert D., Levels K., Bezgin G., Bojak I., Kotter R. Classification of cortical microcircuits based on micro-electrodearray data from slices of rat barrel cortex. Neural Netw. 2009;22(8):1159–1168. doi: 10.1016/j.neunet.2009.07.014. [DOI] [PubMed] [Google Scholar]
  • [27].Staiger J.F., Kotter R., Zilles K., Luhmann H.J. Laminar characteristics of functional connectivity in rat barrel cortex revealed by stimulation with caged-glutamate. Neurosci Res. 2000;37(1):49–58. doi: 10.1016/S0168-0102(00)00094-8. [DOI] [PubMed] [Google Scholar]
  • [28].Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 5th ed. San Diego: Elsevier Academic Press; 2005. p. 367. [Google Scholar]
  • [29].Burkhalter A. Intrinsic connections of rat primary visual cortex: laminar organization of axonal projections. J Comp Neurol. 1989;279(2):171–186. doi: 10.1002/cne.902790202. [DOI] [PubMed] [Google Scholar]
  • [30].Callaway E.M., Wiser A.K. Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex. Vis Neurosci. 1996;13(5):907–922. doi: 10.1017/S0952523800009159. [DOI] [PubMed] [Google Scholar]
  • [31].Gilbert C.D., Wiesel T.N. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature. 1979;280(5718):120–125. doi: 10.1038/280120a0. [DOI] [PubMed] [Google Scholar]
  • [32].Hubel D.H., Wiesel T.N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Petersen C.C., Sakmann B. The excitatory neuronal network of rat layer 4 barrel cortex. J Neurosci. 2000;20(20):7579–7586. doi: 10.1523/JNEUROSCI.20-20-07579.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Chang Y., Yan L.H., Zhang F.K., Gong K.R., Liu M.G., Xiao Y., et al. Spatiotemporal characteristics of pain-associated neuronal activities in primary somatosensory cortex induced by peripheral persistent nociception. Neurosci Lett. 2008;448(1):134–138. doi: 10.1016/j.neulet.2008.08.090. [DOI] [PubMed] [Google Scholar]
  • [35].Feldmeyer D., Sakmann B. Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. J Physiol. 2000;525(Pt1):31–39. doi: 10.1111/j.1469-7793.2000.00031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Alloway K.D., Johnson M.J., Wallace M.B. Thalamocortical interactions in the somatosensory system: interpretations of latency and cross-correlation analyses. J Neurophysiol. 1993;70(3):892–908. doi: 10.1152/jn.1993.70.3.892. [DOI] [PubMed] [Google Scholar]
  • [37].Gottlieb J.P., Keller A. Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp Brain Res. 1997;115(1):47–60. doi: 10.1007/PL00005684. [DOI] [PubMed] [Google Scholar]
  • [38].Heusler P., Cebulla B., Boehmer G., Dinse H.R. A repetitive intracortical microstimulation pattern induces long-lasting synaptic depression in brain slices of the rat primary somatosensory cortex. Exp Brain Res. 2000;135(3):300–310. doi: 10.1007/s002210000530. [DOI] [PubMed] [Google Scholar]
  • [39].Roman F.S., Truchet B., Marchetti E., Chaillan F.A., Soumireu-Mourat B. Correlations between electrophysiological observations of synaptic plasticity modifications and behavioral performance in mammals. Prog Neurobiol. 1999;58(1):61–87. doi: 10.1016/S0301-0082(98)00076-8. [DOI] [PubMed] [Google Scholar]
  • [40].Bear M.F., Kirkwood A. Neocortical long-term potentiation. Curr Opin Neurobiol. 1993;3(2):197–202. doi: 10.1016/0959-4388(93)90210-P. [DOI] [PubMed] [Google Scholar]
  • [41].Castro-Alamancos M.A., Donoghue J.P., Connors B.W. Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J Neurosci. 1995;15(7Pt2):5324–5333. doi: 10.1523/JNEUROSCI.15-07-05324.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES