Abstract
Objective
To compare the phase radians in several cerebral regions between patients with Parkinson’s disease (PD) and control subjects, and to evaluate whether iron deposition quantified by susceptibility-weighted imaging (SWI) is related to the severity of motor symptoms of PD.
Methods
SWI consisted of both magnitude and phase images from a fully flow-compensated, 3-dimensional and gradient-echo (GRE) sequence. Magnitude and phase data were collected at GE HD 1.5T. The regions evaluated included frontal white matter, grey matter, cerebrospinal fluid, putamen, caudate nucleus (CN), substantia nigra pars compacta (SNc), substantia nigra pars reticulata (SNr), and red nucleus (RN). A total number of 42 patients (12 patients without cognitive dysfunction, and 30 with cognitive dysfunction from mild to moderate degrees) and 30 control subjects were employed in the present study.
Results
The phase radians of SNc, CN and RN in PD patients were lower than those in control subjects (P<0.05).
Conclusion
The phase radians can be used to estimate the brain iron deposition in PD patients, which may be helpful in the diagnosis and longitudinal monitoring of PD.
Keywords: Parkinson’s disease, phase radians, susceptibility-weighted imaging, iron deposition
摘要
目的
比较帕金森氏病(Parkinson’s disease, PD)患者和健康对照者多个脑结构的相位偏移值(phase radians), 探讨相位偏移值的临床应用价值。
方法
42 名PD患者及30 名年龄匹配的健康对照者均在1.5 T MR系统中进行头部检查。 所有PD 患者均存在轻度到中度认知功能缺损。 采用磁敏感成像获得相位图, 测量双侧尾状核、 壳核、 黑质致密带、 黑质网状带、 红核、 脑脊液、 额叶白质及额叶灰质内所感兴趣区的相位偏移值。
结果
与正常对照组相比, PD组黑质致密带的相位偏移值均数显著缩短(P < 0.05)。 此外, PD组双侧尾状核和红核的相位偏移值亦显著降低(P < 0.05), 而黑质网状带的相位偏移值与对照组相比无统计学差异(P > 0.05)。
结论
通过对相位偏移值的测定可以估测PD 患者脑内的铁沉积, 为PD 的活体诊断及病情监测提供帮助。
关键词: 帕金森氏病, 相位偏移值, 磁敏感成像, 铁沉积
References
- [1].Schapira A.H. Etiology of Parkinson’s disease. Neurology. 2006;66:S10–23. doi: 10.1212/wnl.66.10_suppl_4.s10. [DOI] [PubMed] [Google Scholar]
- [2].Taylor K.C., Counsell C. Is it Parkinson’s disease, and if not, what is it? Pract Neurol. 2006;6:154–165. doi: 10.1136/jnnp.2006.091835. [DOI] [Google Scholar]
- [3].Griffiths P.D., Dobson B.R., Jones G.R., Clarke D.T. Iron in the basal ganglia in Parkinson’s disease. An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain. 1999;122(Pt4):667–673. doi: 10.1093/brain/122.4.667. [DOI] [PubMed] [Google Scholar]
- [4].Kosta P., Argyropoulou M.I., Markoula S., Konitsiotis S. MRI evaluation of the basal ganglia size and iron content in patients with Parkinson’s disease. J Neurol. 2006;253:26–32. doi: 10.1007/s00415-005-0914-9. [DOI] [PubMed] [Google Scholar]
- [5].Haacke E.M., Cheng N.Y., House M.J., Liu Q., Neelavalli J., Ogg R.J., et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging. 2005;23:1–25. doi: 10.1016/j.mri.2004.10.001. [DOI] [PubMed] [Google Scholar]
- [6].Bartzokis G., Tishler T.A., Lu P.H., Villablanca P., Altshuler L.L., Carter M., et al. Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging. 2007;28:414–423. doi: 10.1016/j.neurobiolaging.2006.02.005. [DOI] [PubMed] [Google Scholar]
- [7].Berg D., Gerlach M., Youdim M., Villablanca P., Altshuler L.L., Carter M., et al. Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem. 2001;79:225–236. doi: 10.1046/j.1471-4159.2001.00608.x. [DOI] [PubMed] [Google Scholar]
- [8].Gotz M., Double K., Gerlach M., Youdim M., Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci. 2004;1012:193–208. doi: 10.1196/annals.1306.017. [DOI] [PubMed] [Google Scholar]
- [9].Michell A., Lewis S., Foltynie T., Barker R. Biomarkers and Parkinson’s disease. Ann Neurol. 2004;35:204–210. doi: 10.1093/brain/awh198. [DOI] [PubMed] [Google Scholar]
- [10].Bartzokis G., Tishler T.A., Shin I.S., Lu P.H., Cummings J.L. Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Ann N Y Acad Sci. 2004;1012:224–236. doi: 10.1196/annals.1306.019. [DOI] [PubMed] [Google Scholar]
- [11].Sadrzadeh S.M., Saffari Y. Iron and brain disorders. Am J Clin Pathol. 2004;121:S64–S70. doi: 10.1309/XLNDTE289WAQYK0Y. [DOI] [PubMed] [Google Scholar]
- [12].Sipe J.C., Lee P., Beutler E. Brain iron metabolism and neurodegenerative disorders. Dev Neurosci. 2002;24:188–196. doi: 10.1159/000065701. [DOI] [PubMed] [Google Scholar]
- [13].Vermersch P., Leys D., Pruvo J.P., Clarisse J., Petit H. Parkinson’s disease and basal ganglia calcifications: prevalence and clinicoradiological correlations. Clin Neurol Neurosurg. 1992;94:213–217. doi: 10.1016/0303-8467(92)90091-G. [DOI] [PubMed] [Google Scholar]
- [14].Haacke E.M., Xu Y., Cheng Y.C., Reichenbach J.R. Susceptibility weighted imaging (SWI) Magn Reson Med. 2004;52:612–618. doi: 10.1002/mrm.20198. [DOI] [PubMed] [Google Scholar]
- [15].Ogg R.J., Langston J.W., Haacke E.M., Steen R.G., Taylor J.S. The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging. 1999;17:1141–1148. doi: 10.1016/S0730-725X(99)00017-X. [DOI] [PubMed] [Google Scholar]
- [16].Tong K.A., Ashwal S., Holshouser B.A., Shutter L.A., Herigault G., Haacke E.M. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology. 2003;227:332–339. doi: 10.1148/radiol.2272020176. [DOI] [PubMed] [Google Scholar]
- [17].Wang Y., Yu Y., Li D., Bae K.T., Brown J.J., Lin W., et al. Artery and vein separation using susceptibility-dependent phase in contrastenhanced MRA. J Magn Reson Imaging. 2000;12:661–670. doi: 10.1002/1522-2586(200011)12:5<661::AID-JMRI2>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- [18].Reichenbach J.R., Venkatesan R., Yablonskiy D.A., Thompson M.R., Lai S., Haacke E.M. Theory and application of static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imaging. 1997;7:266–279. doi: 10.1002/jmri.1880070203. [DOI] [PubMed] [Google Scholar]
- [19].Gurleyik K., Haacke E.M. Quantification of errors in volume measurements of the caudate nucleus using magnetic resonance imaging. Magn Reson Imaging. 2002;15:353–363. doi: 10.1002/jmri.10083. [DOI] [PubMed] [Google Scholar]
- [20].Martin W.R., Wieler M., Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008;70:1411–1417. doi: 10.1212/01.wnl.0000286384.31050.b5. [DOI] [PubMed] [Google Scholar]
- [21].Schenck J.F., Zimmerman E.A. High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed. 2004;17(7):433–445. doi: 10.1002/nbm.922. [DOI] [PubMed] [Google Scholar]
- [22].Vymazal J., Righini A., Brooks R.A., Canesi M., Mariani C., Leonardi M., et al. T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology. 1999;211:489–495. doi: 10.1148/radiology.211.2.r99ma53489. [DOI] [PubMed] [Google Scholar]
- [23].Philippe R., Emmanuel B., Henri P., Francois V., Yad K., Guy Chazot. Magnetic resonance imaging evidence of decreased putamenal iron content in idiopathic Parkinson’s disease. Arch Neurol. 1995;52:583–588. doi: 10.1001/archneur.1995.00540300057013. [DOI] [PubMed] [Google Scholar]
- [24].Graham J.M., Paley M.N., Grunewald R.A., Hoggard N., Griffiths P.D. Brain iron deposition in Parkinson’s disease imaged using the PRIME magnetic resonance sequence. Brain. 2000;123(Pt12):2423–2431. doi: 10.1093/brain/123.12.2423. [DOI] [PubMed] [Google Scholar]
- [25].Levy R., Hazrati L.N., Herrero M.T., Vila M., Hassani O.K., Mouroux M., et al. Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states. Neuroscience. 1997;76(2):335–343. doi: 10.1016/S0306-4522(96)00409-5. [DOI] [PubMed] [Google Scholar]
- [26].Griffiths P.D., Crossman A.R. Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease. Dementia. 1993;4:61–65. doi: 10.1159/000107298. [DOI] [PubMed] [Google Scholar]
- [27].Wallis L.I., Paley M.N., Graham J.M., Grünewald R.A., Wignall E.L., Joy H.M., et al. MRI assessment of basal ganglia iron deposition in Parkinson’s disease. J Magn Reson Imaging. 2008;28(5):1061–1067. doi: 10.1002/jmri.21563. [DOI] [PubMed] [Google Scholar]
- [28].Atasoy H.T., Nuyan O., Tunc T., Yorubulut M., Unal A.E., Inan L.E. T2-weighted MRI in Parkinson’s disease; substantia nigra pars compacta hypointensity correlates with the clinical scores. Neurol India. 2004;52(3):332–337. [PubMed] [Google Scholar]
