Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2009 Nov 26;25(6):343–352. doi: 10.1007/s12264-009-0513-3

Effects of caffeic acid, rofecoxib, and their combination against quinolinic acid-induced behavioral alterations and disruption in glutathione redox status

咖啡酸、 罗非考昔及两者连用对喹啉酸诱导的大鼠行为变化及谷胱甘肽氧化还原紊乱的改善与修复作用

Harikesh Kalonia 1, Puneet Kumar 1, Anil Kumar 1,, Bimla Nehru 2
PMCID: PMC5552501  PMID: 19927170

Abstract

Objective

The neuroprotective roles of cyclooxygenase (COX) and lipooxygenase (LOX) inhibitors have been well documented. Quinolinic acid (QA) is a well-known excitotoxic agent that could induce behavioral, morphological and biochemical alterations similar with symptoms of Huntington’s disease (HD), by stimulating NMDA receptors. However, the exact roles of COX and LOX inhibitors in HD have not yet been explained. The present study aims to elucidate the effects of caffeic acid (a specific inhibitor for LOX), rofecoxib (a specific inhibitor for COX-2), and their combination in ameliorating QAinduced neurotoxicity in rats.

Methods

QA was injected into the right striatum of rats to induce neurotoxicity. Caffeic acid and rofecoxib were then orally administered separately. In the combination study, caffeic acid and rofecoxib were administered together. After that, a series of behavioral assessments were conducted to determine the effects of caffeic acid and rofecoxib, respectively, and the co-effect of caffeic acid and rofecoxib, against QA-induced neurotoxicity.

Results

Intrastriatal QA administration (300 nmol) not only induced a significant reduction in body weight and motor incoordination, but also altered the redox status (decreased glutathione and increased oxidized glutathione level) in striatum, as compared to the sham group. Moreover, chronic treatment with caffeic acid (5 mg/kg and 10 mg/kg, respectively, p.o.) or rofecoxib (10 mg/kg, p.o.) could significantly attenuate QA-induced behavioral alterations and restore the redox status in striatum. However, at the dose of 2.5 mg/kg, caffeic acid did not show any significant effects on these parameters in QA-treated rats. Furthermore, the combination of rofecoxib (10 mg/kg) and caffeic acid (5 mg/kg) could significantly protect against QA neurotoxicity.

Conclusion

The in vivo study indicates that excitotoxic injury to the brain might affect oxidant/antioxidant equilibrium by eliciting changes in glutathione. Moreover, the LOX and the COX pathways may be both involved in quinolinic-induced neurotoxicity, which provides a promising target for HD treatment.

Keywords: caffeic acid, cyclooxygenase, glutathione, quinolinic acid, rofecoxib

References

  • [1].Beal M.F. Neurochemistry and toxin models in Huntington’s disease. Curr Opin Neurol. 1994;7(6):542–547. doi: 10.1097/00019052-199412000-00012. [DOI] [PubMed] [Google Scholar]
  • [2].Sanberg P.R., Calderon S.F., Giordano M., Tew J.M., Norman A.B. The quinolinic acid model of Huntington’s disease: locomotor abnormalities. Exp Neurol. 1989;105:45–53. doi: 10.1016/0014-4886(89)90170-2. [DOI] [PubMed] [Google Scholar]
  • [3].Furtado J.C., Mazurek M.F. Behavioral characterization of quinolinate-induced lesions of the medial striatum: relevance for Huntington’s disease. Exp Neurol. 1996;138(1):158–168. doi: 10.1006/exnr.1996.0054. [DOI] [PubMed] [Google Scholar]
  • [4].Roberts R.C., Ahn A., Swartz K.J., Beal M.F., DiFiglia M. Intrastriatal injections of quinolinic acid or kainic acid: differential patterns of cell survival and the effects of data analysis on outcome. Exp Neurol. 1993;124(2):274–282. doi: 10.1006/exnr.1993.1197. [DOI] [PubMed] [Google Scholar]
  • [5].Norman A.B., Giordano M., Sandberg P.R. Fetal striatal tissue graft into excitotoxin-lesioned striatum: pharmacological and behavioral aspects. Pharmacol Biochem Behav. 1989;34:139–147. doi: 10.1016/0091-3057(89)90365-1. [DOI] [PubMed] [Google Scholar]
  • [6].Reynolds N.C., Lin W., Cameron C.M., Roerig D.L. Differential response of extracellular GABA to intrastriatal perfusions of 3-nitropropionic acid and quinolinic acid in the rat. Brain Res. 1997;778:140–149. doi: 10.1016/S0006-8993(97)01048-2. [DOI] [PubMed] [Google Scholar]
  • [7].Choi D.W. Excitotoxic cell death. J Neurobiol. 1992;23(9):1261–1276. doi: 10.1002/neu.480230915. [DOI] [PubMed] [Google Scholar]
  • [8].Hurley S.D., Olschowka J.A., O’Banion M.K. Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J Neurotrauma. 2002;19(1):1–15. doi: 10.1089/089771502753460196. [DOI] [PubMed] [Google Scholar]
  • [9].Kukreja R.C., Kontos H.A., Hess M.L., Ellis E.F. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res. 1986;59(6):612–619. doi: 10.1161/01.res.59.6.612. [DOI] [PubMed] [Google Scholar]
  • [10].Benzi G., Moretti A. Age- and peroxidative stress-related modifi cations of the cerebral enzymatic activities linked to mitochondria and the glutathione system. Free Radic Biol Med. 1995;19(1):77–101. doi: 10.1016/0891-5849(94)00244-E. [DOI] [PubMed] [Google Scholar]
  • [11].Cooper J.L., Meister A. Glutathione in the brain: disorders of glutathione metabolism. In: Rosenberg A., editor. The Molecular and Genetic Basis of Neurological Disorders. New York: Ruttle Graphics; 1992. pp. 209–238. [Google Scholar]
  • [12].Gerlach M., Riederer P., Youdim M.B.H. Molecular mechanisms for neurodegeneration. Synergism between reactive oxygen species, calcium, and excitotoxic amino acids. In: Battistin L., Scarlato G., Caraceni T., Ruggieri S., editors. Parkinsons Disease, vol. 69. Philadelphia: Lippincott-Raven Publishers; 1996. pp. 177–194. [PubMed] [Google Scholar]
  • [13].Krieglstein J. Excitotoxicity and neuroprotection. Eur J Pharm Sci. 1997;5:181–187. doi: 10.1016/S0928-0987(97)00276-5. [DOI] [Google Scholar]
  • [14].Froissard P., Monrocq H., Duval D. Role of glutathione metabolism in the glutamate-induced programmed cell death of neuronal-like PC12 cells. Eur J Pharmacol. 1997;326:93–99. doi: 10.1016/S0014-2999(97)00155-6. [DOI] [PubMed] [Google Scholar]
  • [15].Kart A, Cigremis Y, Karaman M, Ozen H. Caffeic acid phenethyl ester (CAPE) ameliorates cisplatin-induced hepatotoxicity in rabbit. Exp Toxicol Pathol 2009, 4 [Epub ahead of print]. [DOI] [PubMed]
  • [16].Sul D., Kim H.S., Lee D., Joo S.S., Hwang K.W., Park S.Y. Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci. 2009;84(9–10):257–262. doi: 10.1016/j.lfs.2008.12.001. [DOI] [PubMed] [Google Scholar]
  • [17].Rahamathulla M., Hv G., Rathod N. Solubility and dissolution improvement of Rofecoxib using solid dispersion technique. Pak J Pharm Sci. 2008;21(4):350–355. [PubMed] [Google Scholar]
  • [18].Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 6th edition. San Diego: Academic Press; 2007. p. 256. [Google Scholar]
  • [19].Kumar P., Padi S.S., Naidu P.S., Kumar A. Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: possible antioxidant mechanisms. Fundam Clin Pharmacol. 2007;21(3):297–306. doi: 10.1111/j.1472-8206.2007.00485.x. [DOI] [PubMed] [Google Scholar]
  • [20].Kulkarni SK. Hand book of experimental pharmacology (3rd edition). Delhi, Vallabh Prakashan, 1999.
  • [21].Ellman G.L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  • [22].Zahler W.L., Cleland W.W. A specific and sensitive assay for disulfides. J Biol Chem. 1968;243:716–719. [PubMed] [Google Scholar]
  • [23].Gornall A.G., Bardawill C.J., David M.M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949;177(2):751–766. [PubMed] [Google Scholar]
  • [24].Moyanova S.G., Kortenska L.V., Mitreva R.G., Pashova V.D., Ngomba R.T., Nicoletti F. Multimodal assessment of neuroprotection applied to the use of MK-801 in the endothelin-1 model of transient focal brain ischemia. Brain Res. 2007;11(1153):58–67. doi: 10.1016/j.brainres.2007.03.070. [DOI] [PubMed] [Google Scholar]
  • [25].Estrada Sánchez A.M., Mejía-Toiber J., Massieu L. Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res. 2008;39(3):265–276. doi: 10.1016/j.arcmed.2007.11.011. [DOI] [PubMed] [Google Scholar]
  • [26].Obrenovitch T.P. Quinolinic acid accumulation during neuroinflammation. Does it imply excitotoxicity? Ann N Y Acad Sci. 2001;939:1–10. doi: 10.1111/j.1749-6632.2001.tb03605.x. [DOI] [PubMed] [Google Scholar]
  • [27].Datta K., Biswal S.S., Kehrer J.P. The 5-lipoxygenase-activating protein (FLAP) inhibitor, MK886, induces apoptosis independently of FLAP. Biochem J. 1999;1(340):371–375. doi: 10.1042/0264-6021:3400371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Klegeris A., McGeer P.L. Cyclooxygenase and 5-lipoxygenase inhibitors protect against mononuclear phagocyte neurotoxicity. Neurobiol Aging. 2002;23(5):787–794. doi: 10.1016/S0197-4580(02)00021-0. [DOI] [PubMed] [Google Scholar]
  • [29].Bishnoi M., Patil C.S., Kumar A., Kulkarni S.K. Co-administration of acetyl-11-keto-beta-boswellic acid, a specific 5-lipoxygenase inhibitor, potentiates the protective effect of COX-2 inhibitors in kainic acid-induced neurotoxicity in mice. Pharmacology. 2007;79(1):34–41. doi: 10.1159/000097627. [DOI] [PubMed] [Google Scholar]
  • [30].Wise-Faberowski L., Pearlstein R.D., Warner D.S. NMDA-induced apoptosis in mixed neuronal/glial cortical cell cultures: the effects of isoflurane and dizocilpine. J Neurosurg Anesthesiol. 2006;18(4):240–246. doi: 10.1097/00008506-200610000-00004. [DOI] [PubMed] [Google Scholar]
  • [31].Beal M.F., Ferrante R.J., Swartz K.J., Kowall N.W. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci. 1991;11(6):1649–1659. doi: 10.1523/JNEUROSCI.11-06-01649.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Vazey E.M., Chen K., Hughes S.M., Connor B. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington’s disease. Exp Neurol. 2006;199(2):384–396. doi: 10.1016/j.expneurol.2006.01.034. [DOI] [PubMed] [Google Scholar]
  • [33].Borlongan C.V., Randall T.S., Cahill D.W., Sanberg P.R. Asymmetrical motor behavior in rats with unilateral striatal excitotoxic lesions as revealed by the elevated body swing test. Brain Res. 1995;676:231–234. doi: 10.1016/0006-8993(95)00150-O. [DOI] [PubMed] [Google Scholar]
  • [34].Picconi B., Passino E., Sgobio C., Bonsi P., Barone I., Ghiglieri V., et al. Plastic and behavioral abnormalities in experimental Huntington’s disease: a crucial role for cholinergic interneurons. Neurobiol Dis. 2006;22(1):143–152. doi: 10.1016/j.nbd.2005.10.009. [DOI] [PubMed] [Google Scholar]
  • [35].Scattoni M.L., Valanzano A., Pezzola A., March Z.D., Fusco F.R., Popoli P., et al. Adenosine A2A receptor blockade before striatal excitotoxic lesions prevents long term behavioural disturbances in the quinolinic rat model of Huntington’s disease. Behav Brain Res. 2007;176(2):216–221. doi: 10.1016/j.bbr.2006.10.004. [DOI] [PubMed] [Google Scholar]
  • [36].Bordelon Y.M., Chesselet M.F., Ereciñska M., Silver I.A. Effects of intrastriatal injection of quinolinic acid on electrical activity and extracellular ion concentrations in rat striatum in vivo. Neuroscience. 1998;83(2):459–469. doi: 10.1016/S0306-4522(97)00421-1. [DOI] [PubMed] [Google Scholar]
  • [37].Tang T.S., Slow E., Lupu V., Stavrovskaya I.G., Sugimori M., Llinás R., et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci U S A. 2005;102(7):2602–2607. doi: 10.1073/pnas.0409402102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Soliman D, Hamming KS, Matemisz LC, Light PE. Reactive oxygen species directly modify sodium-calcium exchanger activity in a splice variant-dependent manner. J Mol Cell Cardiol. 2009, May 27 [Epub ahead of print]. [DOI] [PubMed]
  • [39].Nicholls DG. Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta 2009, Mar 17 [Epub ahead of print] [DOI] [PMC free article] [PubMed]
  • [40].Stanika RI, Pivovarova NB, Brantner CA, Watts CA, Winters CA, Andrews SB. Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc Natl Acad Sci U S A 2009, May 29 [Epub ahead of print] [DOI] [PMC free article] [PubMed]
  • [41].Hansson O., Guatteo E., Mercuri N.B., Bernardi G., Li X.J., Castilho R.F., et al. Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene. Eur J Neurosci. 2001;14(9):1492–1504. doi: 10.1046/j.0953-816x.2001.01767.x. [DOI] [PubMed] [Google Scholar]
  • [42].Kelley K.A., Ho L., Winger D., Freire-Moar J., Borelli C.B., Aisen P.S., et al. Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am J Pathol. 1999;155(3):995–1004. doi: 10.1016/S0002-9440(10)65199-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Manev H., Uz T., Sugaya K., Qu T. Putative role of neuronal 5-lipoxygenase in an aging brain. FASEB J. 2000;14(10):1464–1469. doi: 10.1096/fj.14.10.1464. [DOI] [PubMed] [Google Scholar]
  • [44].Misko T.P., Highkin M.K., Veenhuizen A.W., Manning P.T., Stern M.K., Currie M.G., et al. Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J Biol Chem. 1998;273(25):15646–15653. doi: 10.1074/jbc.273.25.15646. [DOI] [PubMed] [Google Scholar]
  • [45].Virág L., Szabó E., Gergely P., Szabó C. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett. 2003;11(140–141):113–124. doi: 10.1016/S0378-4274(02)00508-8. [DOI] [PubMed] [Google Scholar]
  • [46].Szabó C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett. 2003;11(140–141):105–112. doi: 10.1016/S0378-4274(02)00507-6. [DOI] [PubMed] [Google Scholar]
  • [47].Reed D.J. Regulation of reductive process by glutathione. Biol Chem Pharmacol. 1986;35:7–13. doi: 10.1016/0006-2952(86)90545-9. [DOI] [PubMed] [Google Scholar]
  • [48].Aries I, Jakoby WB. Glutathione metabolism and functions. Kroc Found Ser C 1976: 1-382.
  • [49].Reed D.J., Fariss M.W. Glutathione depletion and susceptibility. Pharmacol Rev. 1984;36:525–533. [PubMed] [Google Scholar]
  • [50].Munday R., Winterbourn C.C. Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defence mechanism. Biochem Pharmacol. 1989;38:4349–4352. doi: 10.1016/0006-2952(89)90641-2. [DOI] [PubMed] [Google Scholar]
  • [51].Thifault C., Aumont N., Quirion R., Poirier J. Effect of MPTP and L-deprenyl on antioxidant enzymes and lipid peroxidation levels in mouse brain. J Neurochem. 1995;65:2725–2733. doi: 10.1046/j.1471-4159.1995.65062725.x. [DOI] [PubMed] [Google Scholar]
  • [52].Barker J.E., Heales S.J.R., Cassidy A., BolanÄ os J.P., Land J.M., Clark J.B. Depletion of brain glutathione results in a decrease of glutathione reductase, an enzyme susceptible to oxidative damage. Brain Res. 1996;716:118–122. doi: 10.1016/0006-8993(96)00003-0. [DOI] [PubMed] [Google Scholar]
  • [53].Babu G.N., Bawari M. Single microinjection of L-glutamate induces oxidative stress in discrete regions of rat brain. Biochem Mol Biol Int. 1997;43:1207–1217. doi: 10.1080/15216549700205041. [DOI] [PubMed] [Google Scholar]
  • [54].Murphy T.H., Schnaar R.L., Coyle J.T. Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cysteine uptake. FASEB J. 1990;4:1624–1633. [PubMed] [Google Scholar]
  • [55].Olanow C.W. A radical hypothesis for neurodegeneration. Trends Neurosci. 1993;16:39–44. doi: 10.1016/0166-2236(93)90070-3. [DOI] [PubMed] [Google Scholar]
  • [56].Pereira C.M.F., Oliveira C.R. Glutamate toxicity on a PC12 cell line involves glutathione (GSH) depletion and oxidative stress. Free Radic Biol Med. 1997;23:637–647. doi: 10.1016/S0891-5849(97)00020-8. [DOI] [PubMed] [Google Scholar]
  • [57].Kumar A., Seghal N., Padi S.V., Naidu P.S. Differential effects of cyclooxygenase inhibitors on intracerebroventricular colchicineinduced dysfunction and oxidative stress in rats. Eur J Pharmacol. 2006;551:58–66. doi: 10.1016/j.ejphar.2006.08.076. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES