Abstract
Objective
NMDA receptor channel plays an important role in the pathophysiological process of traumatic brain injury (TBI). The present study aims to study the pathological mechanism of TBI and the impairment of learning and memory after TBI, and to investigate the mechanism of the protective effect of NMDA receptor antagonist MK-801 on learning and memory disorder after TBI.
Methods
Forty Sprague-Dawley rats (weighing approximately 200 g) were randomized into 5 groups (n = 8 in each group): control group, model group, low-dose group (MK-801 0.5 mg/kg), middle-dose group (MK-801 2 mg/kg), and high-dose group (MK-801 10 mg/kg). TBI model was established using a weight-drop head injury mode. After 2-month drug treatment, learning and memory ability was evaluated by using Morris water maze test. Then the animals were sacrificed, and brain tissues were taken out for morphological and immunohistochemical assays.
Results
The ability of learning and memory was significantly impaired in the TBI model animals. Besides, the neuronal caspase-3 expression, neuronal nitric oxide synthase (nNOS)-positive neurons and OX-42-positive microglia were all increased in TBI animals. Meanwhile, the number of neuron synapses was decreased, and vacuoles degeneration could be observed in mitochondria. After MK-801 treatment at 3 different dosages, the ability of learning and memory was markedly improved, as compared to that of the TBI model animals. Moreover, neuronal caspase-3 expression, OX-42-positive microglia and nNOS-positive neurons were all significantly decreased. Meanwhile, the mitochondria degeneration was greatly inhibited.
Conclusion
MK-801 could significantly inhibit the degeneration and apoptosis of neurons in damaged brain areas. It could also inhibit TBI-induced increase in nNOS-positive neurons and OX-42-positive microglia. Impairment in learning and memory in TBI animals could be repaired by treatment with MK-801.
Keywords: traumatic brain injury, MK-801, learning and memory, caspase-3, microglia, neuronal nitric oxide synthase
摘要
目的
NMDA型谷氨酸受体通道在创伤性脑损伤(traumatic brain injury, TBI)的病理生理过程中具有重要的作用。 本研究探讨TBI后的学习记忆损伤及其病理特点, 并观察NMDA型谷氨酸受体拮抗剂MK-801对TBI引起的学习记忆障碍的保护机制。
方法
体重200g左右的SD大鼠40只, 随机分为5组: 正常组(未创伤)、 模型组、 低剂量组(MK-801 0.5 mg/kg)、 中剂量组(MK-801 2 mg/kg)、 高剂量组(MK-801 10 mg/kg), 每组8只。 后4组经自由落体形成脑损伤模型。 经MK-801治疗2个月后, 进行Morris水迷宫测试学习记忆能力。 测试结束后处死, 取脑组织进行形态学及免疫组织化学检测。
结果
在TBI后, 大鼠学习记忆力显著下降。 形态学和免疫组织化学研究表明, TBI大鼠神经细胞内caspase-3表达增加, 神经源性一氧化氮合酶(nNOS)阳性神经元增加, 并且OX-42 阳性小胶质细胞增加, 同时神经元突触减少, 线粒体空泡样变性。 经3种不同剂量的MK-801治疗后, TBI 模型动物学习记忆能力得到显著改善, 神经元caspase-3的表达量降低。 同时, nNOS阳性神经元和OX-42阳性小胶质细胞均显著减少, 线粒体空泡样变性减少。
结论
MK-801明显减少损伤脑区神经元变性死亡, 抑制nNOS阳性神经元和小胶质细胞增生活化等炎症反应, 改善TBI模型动物学习记忆力。
关键词: 创伤性脑损伤, MK-801, 学习记忆, caspase-3, 小胶质细胞, 神经源性—氧化氮合酶
References
- [1].Lippert-Gruner M., Maegele M., Haverkamp H., Klug N., Wedekind C. Health-related quality of life during the first year after severe brain trauma with and without polytrauma. Brain Inj. 2007;21(5):451–455. doi: 10.1080/02699050701343961. [DOI] [PubMed] [Google Scholar]
- [2].Stocchetti N., Colombo A., Ortolano F., Videtta W., Marchesi R., Longhi L., et al. Time course of intracranial hypertension after traumatic brain injury. J Neurotrauma. 2007;24(8):1339–1346. doi: 10.1089/neu.2007.0300. [DOI] [PubMed] [Google Scholar]
- [3].Wood R.L., Rutterford N.A. Demographic and cognitive predictors of long-term psychosocial outcome following traumatic brain injury. J Int Neuropsychol Soc. 2006;12(3):350–358. doi: 10.1017/S1355617706060498. [DOI] [PubMed] [Google Scholar]
- [4].Tavazzi B., Signoretti S., Lazzarino G., Amorini A.M., Delfini R., Cimatti M., et al. Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery. 2005;56(3):582–589. doi: 10.1227/01.NEU.0000156715.04900.E6. [DOI] [PubMed] [Google Scholar]
- [5].Heath D.L., Vink R. Secondary mechanisms in traumatic brain injury: a nurse’s perspective. J Neurosci Nurs. 1999;31(2):97–105. doi: 10.1097/01376517-199904000-00006. [DOI] [PubMed] [Google Scholar]
- [6].Stover J.F., Schoning B., Sakowitz O.W., woiciechowsky C., Unterberg A.W. Effects of tacrolimus on hemispheric water content and cerebrospinal fluid levels of glutamate, hypoxanthine, interleukin-6, and tumor necrosis factor-alpha following controlled cortical impact injury in rats. J Neurosurg. 2001;94(5):782–787. doi: 10.3171/jns.2001.94.5.0782. [DOI] [PubMed] [Google Scholar]
- [7].Celik S.E., Ozturk H., Tolunay S. Therapeutic effect of hypothermia and dizocilpine maleate on traumatic brain injury in neonatal rats. J Neurotrauma. 2006;23(9):1355–1365. doi: 10.1089/neu.2006.23.1355. [DOI] [PubMed] [Google Scholar]
- [8].Hamm R.J., O’Dell D.M., Pike B.R., Lyeth B.G. Cognitive impairment following traumatic brain injury: the effect of pre- and post-injury administration of scopolamine and MK-801. Brain Res Cogn Brain Res. 1993;1(4):223–226. doi: 10.1016/0926-6410(93)90006-Q. [DOI] [PubMed] [Google Scholar]
- [9].Golarai G., Greenwood A.C., Feeney D.M., Connor J.A. Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci. 2001;21(21):8523–8537. doi: 10.1523/JNEUROSCI.21-21-08523.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].Kline A.E., Yu J., Horváth E., Marion D.W., Dixon C.E. The selective 5-HT(1A) receptor agonist repinotan HCl attenuates histopathology and spatial learning deficits following traumatic brain injury in rats. Neuroscience. 2001;106(3):547–555. doi: 10.1016/S0306-4522(01)00300-1. [DOI] [PubMed] [Google Scholar]
- [11].Phillips L.L., Lyeth B.G., Hamm R.J., Jiang J.Y., Povlishock J.T., Reeves T.M. Effect of prior receptor antagonism on behavioral morbidity produced by combined fluid percussion injury and entorhinal cortical lesion. J Neurosci Res. 1997;49(2):197–206. doi: 10.1002/(SICI)1097-4547(19970715)49:2<197::AID-JNR8>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- [12].Bredt D.S., Snyder S.H. Isolation of nitric oxide synthase, a calodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Kim J.H., Yenari M.A., Giffard R.G., Cho S.W., Park K.A., Lee J.E. Agmatine reduces infarct area in a mouse model of transient focal ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol. 2004;189(1):122–130. doi: 10.1016/j.expneurol.2004.05.029. [DOI] [PubMed] [Google Scholar]
- [14].Haga K.K., Gregory L.J., Hicks C.A., Ward M.A., Beech J.S., Bath P.W. The neuronal nitric oxide synthase inhibitor, TRIM, as a neuroprotecitive agent: effects in models of cerebral ischemia using histological and magnetic resonance imaging techniques. Brain Res. 2003;993(1–2):42–53. doi: 10.1016/j.brainres.2003.08.063. [DOI] [PubMed] [Google Scholar]
- [15].Huang P.L. Neuronal and endothelial nitric oxide synthase gene knockout mice. Braz J Med Biol Res. 1999;32(11):1353–1359. doi: 10.1590/S0100-879X1999001100005. [DOI] [PubMed] [Google Scholar]
- [16].Zhao X., Ross M.E., Iadecola C. L-Arginine increases ischemic injury in wild-type mice but not in iNOS-deficient mice. Brain Res. 2003;966(2):308–311. doi: 10.1016/S0006-8993(02)04223-3. [DOI] [PubMed] [Google Scholar]
- [17].Chen J.Y., Wang X.M., Liu J., Chen J.X., Wang R.H., Peng W.Z., et al. Inhibitory effect of human brain myelin basic protein on H2O2-induced apoptosis of human lung cancer cell line YTLMC-90. Ai Zheng. 2006;25(2):170–174. [PubMed] [Google Scholar]
- [18].Beray-Berthat V., Palmier B., Plotkine M., Margaill I. Nertrophils do not contribute to infarction, oxidative stress, and NO synthase activity in severe brain ischemia. Exp Neurol. 2003;182(2):446–454. doi: 10.1016/S0014-4886(03)00106-7. [DOI] [PubMed] [Google Scholar]
- [19].Sairanen T.R., Lindsberg P.J., Brenner M., Sirén A.L. Global forebrain ischemia results in differential cellular expression of interleukin1β (IL-1β) and its receptor at mRNA and protein level. J Cereb Blood Flow Metab. 1997;17(10):1107–1120. doi: 10.1097/00004647-199710000-00013. [DOI] [PubMed] [Google Scholar]
- [20].Liu T., Clark R.K., McDonnell P.C., Young P.R., White R.F., Barone F.C., et al. Tumor necrosis factor-α expression in ischemic neurons. Stroke. 1994;25(7):1481–1488. doi: 10.1161/01.str.25.7.1481. [DOI] [PubMed] [Google Scholar]
- [21].Love S. Oxidative stress in brain ischemia. Brain Pathol. 1999;9(1):119–131. doi: 10.1111/j.1750-3639.1999.tb00214.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Merrill J.E., Ignarro L.J., Sherman M.P., Melinek J., Lane T.E. Microglial cell cytotoxicity of oligodendyocytes in mediated through nitric oxide. J Immunol. 1993;151(4):2132–2141. [PubMed] [Google Scholar]
- [23].Acarin L., González B., Castellano B., Castro A.J. Microglial response to Nmethyl-D-aspartate-mediated excitotoxicity in the immature rat brain. J Comp Neurol. 1996;367:361–374. doi: 10.1002/(SICI)1096-9861(19960408)367:3<361::AID-CNE4>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- [24].Oehmichen M., Meissner C., Konig H.G. Brain injury after gunshot wounding: Morphometric analysis of cell destruction caused by temporary cavitation. J Neurotrauma. 2000;17(2):155–162. doi: 10.1089/neu.2000.17.155. [DOI] [PubMed] [Google Scholar]
- [25].Robertson C.L., Soane L., Siegel Z.T., Fiskum G. The potential role of mitochondria in pediatric traumatic brain injury. Dev Neurosci. 2006;28(4–5):432–446. doi: 10.1159/000094169. [DOI] [PubMed] [Google Scholar]
- [26].Ravishankar S., Ashraf Q.M., Fritz K., Mishra O.P. Delivoria-Papadopoulos M. Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate. Brain Res. 2001;901(1–2):23–29. doi: 10.1016/S0006-8993(01)02109-6. [DOI] [PubMed] [Google Scholar]
- [27].Ishida A., Trescher W.H., Lange M.S., Johnston M.V. Prolonged suppression of brain nitric oxide synthase activity by 7-nitroindazole protects against cerebral hypoxic-ischemic injury in neonatal rat. Brain Dev. 2001;23(5):349–354. doi: 10.1016/S0387-7604(01)00237-6. [DOI] [PubMed] [Google Scholar]
- [28].Gilland E., Puka-Sundvall M., Hillered L., Hagberg H. Mitochondrial function and energy metabolism after hypoxic-ischemia in the immature rat brain: involvement of NMDA receptors. J Cereb Blood Flow Metab. 1998;18(3):297–304. doi: 10.1097/00004647-199803000-00008. [DOI] [PubMed] [Google Scholar]