Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2008 May 22;24(2):117. doi: 10.1007/s12264-008-0117-3

Mechanisms of lysosomal proteases participating in cerebral ischemia-induced neuronal death

溶酶体酶参与脑缺血性神经元死亡的分子机制

Ai-Ping Qin 1, Hui-Ling Zhang 1,, Zheng-Hong Qin 1
PMCID: PMC5552511  PMID: 18369392

Abstract

There are three different types of cell death, including apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). Ischemic neuronal death influences stroke development and progression. Lysosomes are important organelles having an acidic milieu to maintain cellular metabolism by degrading unneeded extra-and intracellular substances. Lysosomal enzymes, including cathepsins and some lipid hydrolases, when secreted following rupture of the lysosomal membrane, can be very harmful to their environment, which results in pathological destruction of cellular structures. Since lysosomes contain catalytic enzymes for degrading proteins, carbohydrates and lipids, it seems natural that they should participate in cellular death and dismantling. In this review, we discuss the recent developments in ischemic neuronal death, and present the possible molecular mechanisms that the lysosomal enzymes participate in the three different types of cell death in ischemic brain damage. Moreover, the research related to the selective cathepsin inhibitors may provide a novel therapeutic target for treating stroke and promoting recovery.

Keywords: lysosomes, cathepsin, necrosis, apoptosis, autophagy, cerebral ischemia

References

  • [1].Schweichel J.U., Merker H.J. The morphology of various types of cell death in prenatal tissues. Teratology. 1973;7:253–266. doi: 10.1002/tera.1420070306. [DOI] [PubMed] [Google Scholar]
  • [2].de Duve C. Lysosomes revisited. Eur J Biochem. 1983;137:391–397. doi: 10.1111/j.1432-1033.1983.tb07841.x. [DOI] [PubMed] [Google Scholar]
  • [3].Tardy C., Codogno P., Autefage H., Levade T., Andrieu-Abadie N. Lysosomes and lysosomal proteins in cancer cell death (new players of an old struggle) Biochim Biophys Acta. 2006;1765:101–125. doi: 10.1016/j.bbcan.2005.11.003. [DOI] [PubMed] [Google Scholar]
  • [4].Yamashima T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol. 2000;62:273–295. doi: 10.1016/S0301-0082(00)00006-X. [DOI] [PubMed] [Google Scholar]
  • [5].Nitatori T., Sato N., Waguri S., Karasawa Y., Araki H., Shibanai K., et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci. 1995;15:1001–1011. doi: 10.1523/JNEUROSCI.15-02-01001.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Seyfried D., Han Y., Zheng Z., Day N., Moin K., Rempel S., et al. Cathepsin B and middle cerebral artery occlusion in the rat. J Neurosurg. 1997;87:716–723. doi: 10.3171/jns.1997.87.5.0716. [DOI] [PubMed] [Google Scholar]
  • [7].Benchoua A., Braudeau J., Reis A., Couriaud C., Onténiente B. Activation of proinflammatory caspases by cathepsin B in focal cerebral ischemia. J Cereb Blood Flow Metab. 2004;24:1272–1279. doi: 10.1097/01.WCB.0000140272.54583.FB. [DOI] [PubMed] [Google Scholar]
  • [8].Tsubokawa T., Solaroglu I., Yatsushige H., Cahill J., Yata K., Zhang J.H. Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke. 2006;37:1888–1894. doi: 10.1161/01.STR.0000227259.15506.24. [DOI] [PubMed] [Google Scholar]
  • [9].Kagedal K., Zhao M., Svensson I., Brunk U.T. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J. 2001;359:335–343. doi: 10.1042/0264-6021:3590335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Imagawa D.K., Osifchin N.E., Paznekas W.A., Shin M.L., Mayer M.M. Consequences of cell membrane attack by complement: release of arachidonate and formation of inflammatory derivatives. Proc Natl Acad Sci USA. 1983;80:6647–6651. doi: 10.1073/pnas.80.21.6647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].İlekel H., İlekel S., Güner G., Özdamar N. Evaluation of lipid peroxidation, cathepsin L and acid phosphatase activities in experimental brain ischemia-reperfusion. Brain Res. 1999;843:18–24. doi: 10.1016/S0006-8993(99)01845-4. [DOI] [PubMed] [Google Scholar]
  • [12].Yamashima T., Saido T.C., Takita M., Miyazawa A., Yamano J., Miyakawa A., et al. Transient brain ischemia provokes Ca2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys. Eur J Neurosci. 1996;8:1932–1944. doi: 10.1111/j.1460-9568.1996.tb01337.x. [DOI] [PubMed] [Google Scholar]
  • [13].Kagedal K., Johansson A.C., Johansson U., Heimlich G., Roberg K., Wang N.S., et al. Lysosomal membrane permeabilization during apoptosis-involvement of Bax? Int J Exp Pathol. 2005;86:309–321. doi: 10.1111/j.0959-9673.2005.00442.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Zhao M., Eaton J.W., Brunk U.T. Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2? FEBS Lett. 2000;485:104–108. doi: 10.1016/S0014-5793(00)02195-5. [DOI] [PubMed] [Google Scholar]
  • [15].Zhao M., Eaton J.W., Brunk U.T. Bcl-2 phosphorylation is required for inhibition of oxidative stress-induced lysosomal leak and ensuing apoptosis. FEBS Lett. 2001;509:405–412. doi: 10.1016/S0014-5793(01)03185-4. [DOI] [PubMed] [Google Scholar]
  • [16].Werneburg N.W., Guicciardi M.E., Bronk S.F., Gores G.J. Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol Gastrointest Liver Physiol. 2002;283:G947–G956. doi: 10.1152/ajpgi.00151.2002. [DOI] [PubMed] [Google Scholar]
  • [17].Liu N., Raja S.M., Zazzeroni F., Metkar S.S., Shah R., Zhang M., et al. NF-kappaB protects from the lysosomal pathway of cell death. EMBO J. 2003;22:5313–5322. doi: 10.1093/emboj/cdg510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Zeng Y.S., Xu Z.C. Co-existence of necrosis and apoptosis in rat hippocampus following transient forebrain ischemia. Neurosci Res. 2000;37:113–125. doi: 10.1016/S0168-0102(00)00107-3. [DOI] [PubMed] [Google Scholar]
  • [19].Ünal-Çevik I., Kilinç M., Can A., Gürsoy-Özdemir Y., Dalkara T. Apoptotic and Necrotic Death Mechanisms Are Concomitantly Activated in the Same Cell After Cerebral Ischemia. Stroke. 2004;35:2189–2194. doi: 10.1161/01.STR.0000136149.81831.c5. [DOI] [PubMed] [Google Scholar]
  • [20].Wei L., Ying D.J., Cui L., Langsdorf J., Yu S.P. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats. Brain Res. 2004;1022:54–61. doi: 10.1016/j.brainres.2004.06.080. [DOI] [PubMed] [Google Scholar]
  • [21].Li W., Yuan X., Nordgren G., Dalen H., Dubowchik G.M., Firestone R.A., et al. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett. 2000;470:35–39. doi: 10.1016/S0014-5793(00)01286-2. [DOI] [PubMed] [Google Scholar]
  • [22].Brunk U.T., Neuzil J., Eaton J.W. Lysosomal involvement in apoptosis. Redox Rep. 2001;6:91–97. doi: 10.1179/135100001101536094. [DOI] [PubMed] [Google Scholar]
  • [23].Cirman T., Oresiæ K., Mazovec G.D., Turk V., Reed J.C., Myers R.M., et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem. 2004;279:3578–3587. doi: 10.1074/jbc.M308347200. [DOI] [PubMed] [Google Scholar]
  • [24].Guicciardi M.E., Leist M., Gores G.J. Lysosomes in cell death. Oncogene. 2004;23:2881–2890. doi: 10.1038/sj.onc.1207512. [DOI] [PubMed] [Google Scholar]
  • [25].Bidère N., Lorenzo H.K., Carmona S., Laforge M., Harper F., Dumont C., et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem. 2003;278:31401–31411. doi: 10.1074/jbc.M301911200. [DOI] [PubMed] [Google Scholar]
  • [26].Heinrich M., Neumeyer J., Jakob M., Hallas C., Tchikov V., Winoto-Morbach S., et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and-3 activation. Cell Death Differ. 2004;11:550–563. doi: 10.1038/sj.cdd.4401382. [DOI] [PubMed] [Google Scholar]
  • [27].Li P., Nijhawan D., Budihardjo I., Srinivasula S.M., Ahmad M., Alnemri E.S., et al. Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–489. doi: 10.1016/S0092-8674(00)80434-1. [DOI] [PubMed] [Google Scholar]
  • [28].Zou H., Henzel W.J., Liu X., Lutschg A., Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90:405–413. doi: 10.1016/S0092-8674(00)80501-2. [DOI] [PubMed] [Google Scholar]
  • [29].Wang Y., Gu Z.L., Cao Y., Liang Z.Q., Han R., Bennett M.C., et al. Lysosomal enzyme cathepsin B is involved in kainic acid-induced excitotoxicity in rat striatum. Brain Res. 2006;1071:245–249. doi: 10.1016/j.brainres.2005.10.074. [DOI] [PubMed] [Google Scholar]
  • [30].Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–1721. doi: 10.1126/science.290.5497.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Zhu C., Wang X., Xu F., Bahr B.A., Shibata M., Uchiyama Y., et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ. 2005;12:162–176. doi: 10.1038/sj.cdd.4401545. [DOI] [PubMed] [Google Scholar]
  • [32].Adhami F., Liao G., Morozov Y.M., Schloemer A., Schmithorst V.J., Lorenz J.N., et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169:566–583. doi: 10.2353/ajpath.2006.051066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [33].Ohsawa Y., Isahara K., Kanamori S., Shibata M., Kametaka S., Gotow T., et al. An ultrastructural and immunohistochemical study of PC12 cells during apoptosis induced by serum deprivation with special reference to autophagy and lysosomal cathepsins. Arch Histol Cytol. 1998;61:395–403. doi: 10.1679/aohc.61.395. [DOI] [PubMed] [Google Scholar]
  • [34].Xue L., Fletcher G.C., Tolkovsky A.M. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci. 1999;14:180–198. doi: 10.1006/mcne.1999.0780. [DOI] [PubMed] [Google Scholar]
  • [35].Gozuacik D., Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23:2891–2906. doi: 10.1038/sj.onc.1207521. [DOI] [PubMed] [Google Scholar]
  • [36].Shimizu S., Kanaseki T., Mizushima N., Mizuta T., Arakawa-Kobayashi S., Thompson C.B., et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004;6:1221–1228. doi: 10.1038/ncb1192. [DOI] [PubMed] [Google Scholar]
  • [37].Thorburn J., Moore F., Rao A., Barclay W.W., Thomas L.R., Grant K.W., et al. Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol Biol Cell. 2005;16:1189–1199. doi: 10.1091/mbc.E04-10-0906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [38].Scarlatti F., Bauvy C., Ventruti A., Sala G., Cluzeaud F., Vandewalle A., et al. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem. 2004;279:18384–18391. doi: 10.1074/jbc.M313561200. [DOI] [PubMed] [Google Scholar]
  • [39].Inbal B., Bialik S., Sabanay I., Shani G., Kimchi A. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol. 2002;157:455–468. doi: 10.1083/jcb.200109094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [40].Cardenas-Aguayo Mdel C., Santa-Olalla J., Baizabal J.M., Salgado L.M., Covarrubias L. Growth factor deprivation induces an alternative non-apoptotic death mechanism that is inhibited by Bcl-2 in cells derived from neural precursor cells. J Hematother Stem Cell Res. 2003;12:735–748. doi: 10.1089/15258160360732759. [DOI] [PubMed] [Google Scholar]
  • [41].Lee J.M., Zipfel G.J., Choi D.W. The changing landscape of ischemic brain injury mechanisms. Nature. 1999;399(6738Suppl):A7–A14. doi: 10.1038/399a007. [DOI] [PubMed] [Google Scholar]
  • [42].Seyfried D.M., Veyna R., Han Y., Li K., Tang N., Betts R.L., et al. A selective cysteine protease inhibitor is non-toxic and cerebroprotective in rats undergoing transient middle cerebral artery ischemia. Brain Res. 2001;901:94–101. doi: 10.1016/S0006-8993(01)02289-2. [DOI] [PubMed] [Google Scholar]
  • [43].Tsubokawa T., Yamaguchi-Okada M., Calvert J.W., Solaroglu I., Shimamura N., Yata K., et al. Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats. J Neurosci Res. 2006;84:832–840. doi: 10.1002/jnr.20977. [DOI] [PubMed] [Google Scholar]
  • [44].Yoshida M., Yamashima T., Zhao L., Tsuchiya K., Kohda Y., Tonchev A.B., et al. Primate neurons show different vulnerability to transient ischemia and response to cathepsin inhibition. Acta Neuropathol. 2002;104:267–272. doi: 10.1007/s00401-002-0554-4. [DOI] [PubMed] [Google Scholar]
  • [45].Luke C.J., Pak S.C., Askew Y.S., Naviglia T.L., Askew D.J., Nobar S.M., et al. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell. 2007;130:1108–1119. doi: 10.1016/j.cell.2007.07.013. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES